相關習題
 0  355431  355439  355445  355449  355455  355457  355461  355467  355469  355475  355481  355485  355487  355491  355497  355499  355505  355509  355511  355515  355517  355521  355523  355525  355526  355527  355529  355530  355531  355533  355535  355539  355541  355545  355547  355551  355557  355559  355565  355569  355571  355575  355581  355587  355589  355595  355599  355601  355607  355611  355617  355625  366461 

科目: 來源: 題型:

【題目】如圖,長方形紙片ABCD,點E、F分別在邊AB、CD上,連接EF.將∠BEF對折,點B落在直線EF上的點B′處,得到折痕EC;將∠AEF對折,點A落在直線EF上的點A′處,得到折痕EN

1)若∠BEB′=110°,則∠BEC   °,∠AEN   °,∠BEC+AEN   °.

2)若∠BEB′=m°,則(1)中∠BEC+AEN的值是否改變?請說明你的理由.

3)將∠ECF對折,點E剛好落在F處,且折痕與BC重合,求∠AEN的度數(shù).(提示,長方形的四個角都是90°)

查看答案和解析>>

科目: 來源: 題型:

【題目】小剛在課外書中看到這樣一道有理數(shù)的混合運算題:

計算:

她發(fā)現(xiàn),這個算式反映的是前后兩部分的和,而這兩部分之間存在著某種關系,利用這種關系,他順利地解答了這道題。

(1)前后兩部分之間存在著什么關系?

(2)先計算哪步分比較簡便?并請計算比較簡便的那部分。

(3)利用(1)中的關系,直接寫出另一部分的結果。

(4)根據(jù)以上分析,求出原式的結果。

查看答案和解析>>

科目: 來源: 題型:

【題目】3張紙牌,分別是紅桃3、紅桃4和黑桃5(簡稱紅3,紅4,黑5).把牌洗勻后甲先抽取一張,記下花色和數(shù)字后將牌放回,洗勻后乙再抽取一張.

1)兩次抽得紙牌均為紅桃的概率;(請用畫樹狀圖列表等方法寫出分析過程)

2)甲、乙兩人做游戲,現(xiàn)有兩種方案.A方案:若兩次抽得花色相同則甲勝,否則乙勝.B方案:若兩次抽得紙牌的數(shù)字和為奇數(shù)則甲勝,否則乙勝.請問甲選擇哪種方案勝率更高?

查看答案和解析>>

科目: 來源: 題型:

【題目】已知,如圖,B,C兩點把線段AD分成2:5:3三部分,MAD的中點,BM=6cm,求CMAD的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】學生的學業(yè)負擔過重會嚴重影響學生對待學習的態(tài)度.為此我市教育部門對部分學校的八年級學生對待學習的態(tài)度進行了一次抽樣調查(把學習態(tài)度分為三個層級,A級:對學習很感興趣;B級:對學習較感興趣;C級:對學習不感興趣),并將調查結果繪制成圖和圖的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:

1)此次抽樣調查中,共調查了 名學生;

2)將圖補充完整;

3)求出圖C級所占的圓心角的度數(shù);

4)根據(jù)抽樣調查結果,請你估計我市近8000名八年級學生中大約有多少名學生學習態(tài)度達標(達標包括A級和B級)?

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在⊙O中,BP,A,C是圓上的點,PB= PC PDCD,CD交⊙OA,若AC=AD,PD =sinPAD =,PAB的面積為_______

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,一個正比例函數(shù)與一個一次函數(shù)的圖象交于點A3,4),其中一次函數(shù)與y軸交于B點,且OAOB

1)求這兩個函數(shù)的表達式;

2)求△AOB的面積S

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在ABC中,ACB=90°,點D,E分別在AC,BC上,且CDE=B,將CDE沿DE折疊,點C恰好落在AB邊上的點F處.若AC=8,AB=10,則CD的長為

查看答案和解析>>

科目: 來源: 題型:

【題目】以四邊形ABCD的邊AB、AD為底邊分別作等腰三角形ABFADE,連接EB.

(1)當四邊形ABCD為正方形時(如圖1),以邊ABAD為斜邊分別向外側作等腰直角三角形ABFADE,連接EBFD,線段EBFD的數(shù)量關系是 .

(2)當四邊形ABCD為矩形時(如圖2),以邊AB、AD為斜邊分別向內側作等腰直角三角形ABFADE,連接EFBD,線段EFBD具有怎樣的數(shù)量關系?請加以證明;

(3)當四邊形ABCD為平行四邊形時(如圖3),以邊AB、AD為斜邊分別向平行四邊形內測、外側作等腰直角三角形ABFADE,且EADFBA的頂角都為α,連接EFBD,交點為G,請用α表示出∠EGD,并說明理由.

1 2 3

【答案】1EF=BD;(2EF=BD;(3

【解析】分析:(1)正方形的性質、等邊三角形的性質和全等三角形的證明方法可證明△AFD≌△ABE,由全等三角形的性質即可得到EB=FD;(2)根據(jù)等腰直角三角形的性質可得,再證得∠BAD=∠FAE,即可判定△BADFAE ,根據(jù)相似三角形的性質可得,即可得;(3),先證△BFADEA,即可得,

再證得,所以△BADFAE,根據(jù)全等三角形的性質即可得,再由∠AHE=DHG,即可得.

詳解:(1)EF=BD,

理由如下:

四邊形ABCD為正方形,

∴AB=AD

∵以四邊形ABCD的邊AB、AD為邊分別向外側作等邊三角形ABFADE

∴AF=AE,∠FAB=∠EAD=60°,

∵∠FAD=∠BAD+∠FAB=90°+60°=150°,

∠BAE=∠BAD+∠EAD=90°+60°=150°,

∴∠FAD=∠BAE,

在△AFD和△ABE中, ,

∴△AFD≌△ABE,

∴EB=FD

(2)EF=BD.

證明:∵△AFB為等腰直角三角形

,FAB=45°

同理: ,EAD=45° ∴∠BAD+FAD=EAD+DAF

即∠BAD=FAE

,

∴△BADFAE

即:

3)解:

∵△AFB為等腰直角三角形,FB=FA

同理:ED=EA,∴

又∵ ,∴△BFADEA,

,

∴△BADFAE,

,

又∵∠AHE=DHG,

.

點睛:本題考查了正方形的性質、全等三角形的判定和性質、等邊三角形的性質等腰直角三角形的先證、相似三角形的判定和性質,題目的綜合性很強,難度也不小,解題的關鍵是對特殊幾何圖形的性質要準確掌握.

型】解答
束】
27

【題目】如圖,二次函數(shù)的圖象交x軸于A、B兩點,y軸于點C,B的坐標為3,0,頂點C的坐標為1,4.連接BC.

1)求二次函數(shù)的解析式和直線BC的解析式;

2)點M是直線BC上的一個動點(不與B、C重合),過點Mx軸的垂線,交拋物線于點N,交x軸于點P.

①如圖1,求線段MN長度的最大值;

②如圖2,連接AM,QNQP.試問:拋物線上是否存在點Q,使得的面積相等,且線段NQ的長度最?如果存在,求出點Q的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,直角坐標系中,直線與反比例函數(shù)的圖象交于AB兩點,已知A點的縱坐標是2.

(1)求反比例函數(shù)的解析式.

(2)將直線沿x軸向右平移6個單位后,與反比例函數(shù)在第二象限內交于點C.動點Py軸正半軸上運動,當線段PA與線段PC之差達到最大時,求點P的坐標.

【答案】(1);(2)P(0,6)

【解析】試題分析:(1)先求得點A的坐標,再利用待定系數(shù)法求得反比例函數(shù)的解析式即可;(2)連接AC,根據(jù)三角形兩邊之差小于第三邊知:當A、C、P不共線時,PA-PC<AC;當A、C、P不共線時,PA-PC=AC;因此,當點P在直線AC與y軸的交點時,PA-PC取得最大值.先求得平移后直線的解析式,再求得平移后直線與反比例函數(shù)的圖象的交點坐標,最后求直線AC的解析式,即可求得點P的坐標.

試題解析:

令一次函數(shù),則,

解得:,即點A的坐標為(-4,2).

點A(-4,2)在反比例函數(shù)的圖象上,

∴k=-4×2=-8,

∴反比例函數(shù)的表達式為

連接AC,根據(jù)三角形兩邊之差小于第三邊知:當A、C、P不共線時,PA-PC<AC;當A、C、P不共線時,PA-PC=AC;因此,當點P在直線AC與y軸的交點時,PA-PC取得最大值.

設平移后直線于x軸交于點F,則F(6,0)

設平移后的直線解析式為,

將F(6,0)代入得:b=3

∴直線CF解析式:

3=,解得:,

∴C(-2,4)

∵A、C兩點坐標分別為A(-4,2)、C(-2,4)

∴直線AC的表達式為,

此時,P點坐標為P(0,6).

點睛:本題是一次函數(shù)與反比例函數(shù)的綜合題,主要考查了用待定系數(shù)法求函數(shù)的解析式、一次函數(shù)與反比例函數(shù)的交點坐標,熟練運用一次函數(shù)及反比例函數(shù)的性質是解題的關鍵.

型】解答
束】
26

【題目】以四邊形ABCD的邊AB、AD為底邊分別作等腰三角形ABFADE,連接EB.

(1)當四邊形ABCD為正方形時(如圖1),以邊AB、AD為斜邊分別向外側作等腰直角三角形ABFADE,連接EB、FD,線段EBFD的數(shù)量關系是 .

(2)當四邊形ABCD為矩形時(如圖2),以邊AB、AD為斜邊分別向內側作等腰直角三角形ABFADE,連接EF、BD,線段EFBD具有怎樣的數(shù)量關系?請加以證明;

(3)當四邊形ABCD為平行四邊形時(如圖3),以邊AB、AD為斜邊分別向平行四邊形內測、外側作等腰直角三角形ABFADE,且EADFBA的頂角都為α,連接EF、BD,交點為G,請用α表示出∠EGD,并說明理由.

1 2 3

查看答案和解析>>

同步練習冊答案