科目: 來源: 題型:
【題目】如圖,長方形紙片ABCD,點E、F分別在邊AB、CD上,連接EF.將∠BEF對折,點B落在直線EF上的點B′處,得到折痕EC;將∠AEF對折,點A落在直線EF上的點A′處,得到折痕EN.
(1)若∠BEB′=110°,則∠BEC= °,∠AEN= °,∠BEC+∠AEN= °.
(2)若∠BEB′=m°,則(1)中∠BEC+∠AEN的值是否改變?請說明你的理由.
(3)將∠ECF對折,點E剛好落在F處,且折痕與B′C重合,求∠AEN的度數(shù).(提示,長方形的四個角都是90°)
查看答案和解析>>
科目: 來源: 題型:
【題目】小剛在課外書中看到這樣一道有理數(shù)的混合運算題:
計算:
她發(fā)現(xiàn),這個算式反映的是前后兩部分的和,而這兩部分之間存在著某種關系,利用這種關系,他順利地解答了這道題。
(1)前后兩部分之間存在著什么關系?
(2)先計算哪步分比較簡便?并請計算比較簡便的那部分。
(3)利用(1)中的關系,直接寫出另一部分的結果。
(4)根據(jù)以上分析,求出原式的結果。
查看答案和解析>>
科目: 來源: 題型:
【題目】有3張紙牌,分別是紅桃3、紅桃4和黑桃5(簡稱紅3,紅4,黑5).把牌洗勻后甲先抽取一張,記下花色和數(shù)字后將牌放回,洗勻后乙再抽取一張.
(1)兩次抽得紙牌均為紅桃的概率;(請用“畫樹狀圖”或“列表”等方法寫出分析過程)
(2)甲、乙兩人做游戲,現(xiàn)有兩種方案.A方案:若兩次抽得花色相同則甲勝,否則乙勝.B方案:若兩次抽得紙牌的數(shù)字和為奇數(shù)則甲勝,否則乙勝.請問甲選擇哪種方案勝率更高?
查看答案和解析>>
科目: 來源: 題型:
【題目】學生的學業(yè)負擔過重會嚴重影響學生對待學習的態(tài)度.為此我市教育部門對部分學校的八年級學生對待學習的態(tài)度進行了一次抽樣調查(把學習態(tài)度分為三個層級,A級:對學習很感興趣;B級:對學習較感興趣;C級:對學習不感興趣),并將調查結果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調查中,共調查了 名學生;
(2)將圖①補充完整;
(3)求出圖②中C級所占的圓心角的度數(shù);
(4)根據(jù)抽樣調查結果,請你估計我市近8000名八年級學生中大約有多少名學生學習態(tài)度達標(達標包括A級和B級)?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在⊙O中,B,P,A,C是圓上的點,PB= PC, PD⊥CD,CD交⊙O于A,若AC=AD,PD =,sin∠PAD =,則△PAB的面積為_______.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一個正比例函數(shù)與一個一次函數(shù)的圖象交于點A(3,4),其中一次函數(shù)與y軸交于B點,且OA=OB.
(1)求這兩個函數(shù)的表達式;
(2)求△AOB的面積S.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別在AC,BC上,且∠CDE=∠B,將△CDE沿DE折疊,點C恰好落在AB邊上的點F處.若AC=8,AB=10,則CD的長為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】以四邊形ABCD的邊AB、AD為底邊分別作等腰三角形ABF和ADE,連接EB.
(1)當四邊形ABCD為正方形時(如圖1),以邊AB、AD為斜邊分別向外側作等腰直角三角形ABF和ADE,連接EB、FD,線段EB和FD的數(shù)量關系是 .
(2)當四邊形ABCD為矩形時(如圖2),以邊AB、AD為斜邊分別向內側作等腰直角三角形ABF和ADE,連接EF、BD,線段EF和BD具有怎樣的數(shù)量關系?請加以證明;
(3)當四邊形ABCD為平行四邊形時(如圖3),以邊AB、AD為斜邊分別向平行四邊形內測、外側作等腰直角三角形ABF和ADE,且△EAD與△FBA的頂角都為α,連接EF、BD,交點為G,請用α表示出∠EGD,并說明理由.
圖1 圖2 圖3
【答案】(1)EF=BD;(2)EF=BD;(3)
【解析】分析:(1)正方形的性質、等邊三角形的性質和全等三角形的證明方法可證明△AFD≌△ABE,由全等三角形的性質即可得到EB=FD;(2)根據(jù)等腰直角三角形的性質可得,再證得∠BAD=∠FAE,即可判定△BAD∽△FAE ,根據(jù)相似三角形的性質可得,即可得;(3),先證△BFA∽△DEA,即可得,
再證得,所以△BAD∽△FAE,根據(jù)全等三角形的性質即可得,再由∠AHE=∠DHG,即可得.
詳解:(1)EF=BD,
理由如下:
四邊形ABCD為正方形,
∴AB=AD,
∵以四邊形ABCD的邊AB、AD為邊分別向外側作等邊三角形ABF和ADE,
∴AF=AE,∠FAB=∠EAD=60°,
∵∠FAD=∠BAD+∠FAB=90°+60°=150°,
∠BAE=∠BAD+∠EAD=90°+60°=150°,
∴∠FAD=∠BAE,
在△AFD和△ABE中, ,
∴△AFD≌△ABE,
∴EB=FD;
(2)EF=BD.
證明:∵△AFB為等腰直角三角形
∴,∠FAB=45°
同理: ,∠EAD=45° ∴∠BAD+∠FAD=∠EAD+∠DAF
即∠BAD=∠FAE
∵, ∴
∴△BAD∽△FAE ∴
即:
(3)解:
∵△AFB為等腰直角三角形,∴FB=FA,
同理:ED=EA,∴,
又∵ ,∴△BFA∽△DEA,
∴,
∴,
∴,
∴△BAD∽△FAE,
∴,
又∵∠AHE=∠DHG,
∴.
點睛:本題考查了正方形的性質、全等三角形的判定和性質、等邊三角形的性質等腰直角三角形的先證、相似三角形的判定和性質,題目的綜合性很強,難度也不小,解題的關鍵是對特殊幾何圖形的性質要準確掌握.
【題型】解答題
【結束】
27
【題目】如圖,二次函數(shù)的圖象交x軸于A、B兩點,交y軸于點C,點B的坐標為(3,0),頂點C的坐標為(1,4).連接BC.
(1)求二次函數(shù)的解析式和直線BC的解析式;
(2)點M是直線BC上的一個動點(不與B、C重合),過點M作x軸的垂線,交拋物線于點N,交x軸于點P.
①如圖1,求線段MN長度的最大值;
②如圖2,連接AM,QN,QP.試問:拋物線上是否存在點Q,使得與的面積相等,且線段NQ的長度最?如果存在,求出點Q的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直角坐標系中,直線與反比例函數(shù)的圖象交于A,B兩點,已知A點的縱坐標是2.
(1)求反比例函數(shù)的解析式.
(2)將直線沿x軸向右平移6個單位后,與反比例函數(shù)在第二象限內交于點C.動點P在y軸正半軸上運動,當線段PA與線段PC之差達到最大時,求點P的坐標.
【答案】(1);(2)P(0,6)
【解析】試題分析:(1)先求得點A的坐標,再利用待定系數(shù)法求得反比例函數(shù)的解析式即可;(2)連接AC,根據(jù)三角形兩邊之差小于第三邊知:當A、C、P不共線時,PA-PC<AC;當A、C、P不共線時,PA-PC=AC;因此,當點P在直線AC與y軸的交點時,PA-PC取得最大值.先求得平移后直線的解析式,再求得平移后直線與反比例函數(shù)的圖象的交點坐標,最后求直線AC的解析式,即可求得點P的坐標.
試題解析:
令一次函數(shù)中,則,
解得:,即點A的坐標為(-4,2).
∵點A(-4,2)在反比例函數(shù)的圖象上,
∴k=-4×2=-8,
∴反比例函數(shù)的表達式為.
連接AC,根據(jù)三角形兩邊之差小于第三邊知:當A、C、P不共線時,PA-PC<AC;當A、C、P不共線時,PA-PC=AC;因此,當點P在直線AC與y軸的交點時,PA-PC取得最大值.
設平移后直線于x軸交于點F,則F(6,0)
設平移后的直線解析式為,
將F(6,0)代入得:b=3
∴直線CF解析式:
令3=,解得:,
∴C(-2,4)
∵A、C兩點坐標分別為A(-4,2)、C(-2,4)
∴直線AC的表達式為,
此時,P點坐標為P(0,6).
點睛:本題是一次函數(shù)與反比例函數(shù)的綜合題,主要考查了用待定系數(shù)法求函數(shù)的解析式、一次函數(shù)與反比例函數(shù)的交點坐標,熟練運用一次函數(shù)及反比例函數(shù)的性質是解題的關鍵.
【題型】解答題
【結束】
26
【題目】以四邊形ABCD的邊AB、AD為底邊分別作等腰三角形ABF和ADE,連接EB.
(1)當四邊形ABCD為正方形時(如圖1),以邊AB、AD為斜邊分別向外側作等腰直角三角形ABF和ADE,連接EB、FD,線段EB和FD的數(shù)量關系是 .
(2)當四邊形ABCD為矩形時(如圖2),以邊AB、AD為斜邊分別向內側作等腰直角三角形ABF和ADE,連接EF、BD,線段EF和BD具有怎樣的數(shù)量關系?請加以證明;
(3)當四邊形ABCD為平行四邊形時(如圖3),以邊AB、AD為斜邊分別向平行四邊形內測、外側作等腰直角三角形ABF和ADE,且△EAD與△FBA的頂角都為α,連接EF、BD,交點為G,請用α表示出∠EGD,并說明理由.
圖1 圖2 圖3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com