科目: 來源: 題型:
【題目】在平面坐標(biāo)系中,正方形ABCD的位置如圖所示,點A的坐標(biāo)為(1,0),點D的坐標(biāo)為(0,2),延長CB交x軸于點A1,作正方形A1B1C1C,延長C1B1交x軸于點A2,作正方形A2B2C2C1,………按這樣的規(guī)律進行下去,正方形A2018B2018C2018C2017的面積為( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在四邊形ABCD中,點E、F分別是AB、CD的中點,過點E作AB的垂線,過點F作CD的垂線,兩垂線交于點G,連接AG、BG、CG、DG,且∠AGD=∠BGC.
(1)求證:AD=BC;
(2)求證:△AGD∽△EGF;
(3)如圖2,若AD、BC所在直線互相垂直,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】CD經(jīng)過∠BCA頂點C的一條直線,CA=CB,E、F分別是直線CD上兩點,且∠BEC=∠CFA=∠,
(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E、F在射線CD上,請解決下面兩個問題:
①如圖1,若∠BCA=90°,∠=90°,則BE_____CF;EF____.(填“>”“<”或“=”)
②如圖2,若0°<∠BCA<180°,請?zhí)砑右粋關(guān)于∠與∠BCA關(guān)系的條件__________,使①中的兩個結(jié)論仍然成立,并證明兩個結(jié)論成立.
(2)如圖3,若直線CD經(jīng)過∠BCA的外部,∠=∠BCA,請?zhí)岢?/span>EF,BE,AF三條線段數(shù)量關(guān)系的合理猜想(不要求證明).
查看答案和解析>>
科目: 來源: 題型:
【題目】(2017甘肅省天水市)△ABC和△DEF是兩個全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點E與△ABC的斜邊BC的中點重合,將△DEF繞點E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點P,線段EF與射線CA相交于點Q.
(1)如圖①,當(dāng)點Q在線段AC上,且AP=AQ時,求證:△BPE≌△CQE;
(2)如圖②,當(dāng)點Q在線段CA的延長線上時,求證:△BPE∽△CEQ;并求當(dāng)BP=2,CQ=9時BC的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點,AE=ED,DF=DC,連接EF并延長交BC的延長線于點G.
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長為4,求BG的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】中國古代有著輝煌的數(shù)學(xué)成就,《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》等是我國古代數(shù)學(xué)的重要文獻.
(1)小明想從這4部數(shù)學(xué)名著中隨機選擇1部閱讀,則他選中《九章算術(shù)》的概率為________;
(2)某中學(xué)擬從這4部數(shù)學(xué)名著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,用樹狀圖或列表法求恰好選中《九章算術(shù)》和《孫子算經(jīng)》的概率.(設(shè)《周髀算經(jīng)》為,《九章算術(shù)》為,《海島算經(jīng)》為,《孫子算經(jīng)》為)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個點坐標(biāo)分別為A(-2,-1),B(-1,1),C(0,-2).
(1)點B關(guān)于坐標(biāo)原點O對稱的點的坐標(biāo)為____________.
(2)將△ABC繞點C順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A1B1C1;
(3)以點O為位似中心,在網(wǎng)格中畫出△A2B2C2,使△A2B2C2與△ABC位似,且△A2B2C2與△ABC的相似比為1:2.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知AB=AC,AE=AF,BE與CF交于點D,則①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分線上,以上結(jié)論中,正確的是
A. 只有①B. 只有②
C. 只有①和②D. ①②與③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com