科目: 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知矩形OACB的邊OA,OB分別在x軸上和y軸上,線段OA=24,OB=12;點(diǎn)P從點(diǎn)O開(kāi)始沿OA邊勻速移動(dòng),點(diǎn)M從點(diǎn)B開(kāi)始沿BO邊勻速移動(dòng).如果點(diǎn)P,點(diǎn)M同時(shí)出發(fā),它們移動(dòng)的速度相同都是1個(gè)單位/秒,設(shè)經(jīng)過(guò)x秒時(shí)(0≤x≤12),△POM的面積為y.
(1)求直線AB的解析式;
(2)求y與x的函數(shù)關(guān)系式;
(3)連接矩形的對(duì)角線AB,當(dāng)x為何值時(shí),以M、O、P為頂點(diǎn)的三角形等于△AOB面積的;
(4)當(dāng)△POM的面積最大時(shí),將△POM沿PM所在直線翻折后得到△PDM,試判斷D點(diǎn)是否在直線AB上,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(﹣2,0),點(diǎn)B(4,0),點(diǎn)D(2,4),與y軸交于點(diǎn)C,作直線BC,連接AC、CD.
(1)求拋物線的函數(shù)表達(dá)式;
(2)E是拋物線上的點(diǎn),求滿(mǎn)足∠ECD=∠ACO的點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某中學(xué)對(duì)“希望工程捐款活動(dòng)”進(jìn)行抽樣調(diào)查,得到一組學(xué)生捐款情況的數(shù)據(jù)如圖是根據(jù)這組數(shù)據(jù)繪制的統(tǒng)計(jì)圖,圖中從左到右各長(zhǎng)方形高度之比為3:4:5:8,又知此次調(diào)查中捐15元和20元的人數(shù)共39人.
他們一共抽查了多少人?
這組數(shù)據(jù)的眾數(shù)、中位數(shù)各是多少?
若該校共有1500名學(xué)生,請(qǐng)你估算全校學(xué)生共捐款多少元?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,直角坐標(biāo)系中,的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為.
(1)寫(xiě)出點(diǎn)A、B的坐標(biāo):
______ ,______ 、 ______ ,______
(2)將先向左平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到,則的三個(gè)頂點(diǎn)坐標(biāo)分別是 ______ ,______ 、 ______ ,______ 、 ______ ,______
(3)求的面積.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】由線段a,b,c組成的三角形不是直角三角形的是( 。
A. a=15,b=8,c=17 B. a=12,b=14,c=15
C. a=,b=4,c=5 D. a=7,b=24,c=25
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱(chēng)這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫(xiě)出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】(問(wèn)題情境)
課外興趣小組活動(dòng)時(shí),老師提出了如下問(wèn)題:如圖1,△ABC中,若AB=12,AC=8,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過(guò)合作交流,得到了如下的解決方法:延長(zhǎng)AD到E,使DE=AD,連接BE.請(qǐng)根據(jù)小明的方法思考:
(1)由已知和作圖能得到△ADC≌△EDB,依據(jù)是 .
A.SSS B.SAS C.AAS D.HL
(2)由“三角形的三邊關(guān)系”可求得AD的取值范圍是 .
解后反思:題目中出現(xiàn)“中點(diǎn)”“中線”等條件,可考慮延長(zhǎng)中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集合到同一個(gè)三角形中.
(初步運(yùn)用)
如圖2,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF.若EF=3,EC=2,求線段BF的長(zhǎng).
(靈活運(yùn)用)
如圖3,在△ABC中,∠A=90°,D為BC中點(diǎn),DE⊥DF,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,試猜想線段BE、CF、EF三者之間的等量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=50°時(shí),求∠DEF的度數(shù).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上兩動(dòng)點(diǎn),且∠DAE=45°,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°后,得到△AFC,連接DF.
(1)試說(shuō)明:△AED≌△AFD;
(2)當(dāng)BE=3,CE=9時(shí),求∠BCF的度數(shù)和DE的長(zhǎng);
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】二次函數(shù)的部分圖象如圖,圖象過(guò)點(diǎn)(﹣1,0),對(duì)稱(chēng)軸為直線,下列結(jié)論:①;②;③;④當(dāng)時(shí), 隨的增大而增大.其中正確的結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com