科目: 來源: 題型:
【題目】水果店張阿姨以每千克2元的價格購進某種水果若干千克,銷售一部分后,根據(jù)市場行情降價銷售,銷售額y (元)與銷售量x (千克)之間的關(guān)系如圖所示.
(1)情境中的變量有_______________.
(2)求降價后銷售額y (元)與銷售量x (千克)之間的函數(shù)表達式;
(3)當銷售量為多少千克時,張阿姨銷售此種水果的利潤為150元?
查看答案和解析>>
科目: 來源: 題型:
【題目】一個鋼筋三角架三邊長分別為,,,現(xiàn)在要做一個和它相似的鋼筋三角架,而只有長為和的兩根鋼筋,要求以其中的一根為一邊,從另一根上截兩段(允許有余料)作為另兩邊,則不同的截法有( )
A. 一種 B. 兩種 C. 三種 D. 四種或四種以上
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設DE=x.
(1)用含x的代數(shù)式表示線段CF的長;
(2)如果把△CAE的周長記作C△CAE,△BAF的周長記作C△BAF,設=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;
(3)當∠ABE的正切值是時,求AB的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1) 觀察被開方數(shù)a的小數(shù)點與算術(shù)平方根的小數(shù)點的移動規(guī)律:
a | 0.0001 | 0.01 | 1 | 100 | 10000 |
0.01 | x | 1 | y | 100 |
填空:x= _______, y=______.
(2)根據(jù)你發(fā)現(xiàn)的規(guī)律填空:
①已知≈1.414,則 =________,=_______;
②= 0.274,記的整數(shù)部分為x,則=___________.
查看答案和解析>>
科目: 來源: 題型:
【題目】(2017貴州省遵義市)如圖,拋物線(a<0,a、b為常數(shù))與x軸交于A、C兩點,與y軸交于B點,直線AB的函數(shù)關(guān)系式為.
(1)求該拋物線的函數(shù)關(guān)系式與C點坐標;
(2)已知點M(m,0)是線段OA上的一個動點,過點M作x軸的垂線l分別與直線AB和拋物線交于D、E兩點,當m為何值時,△BDE恰好是以DE為底邊的等腰三角形?
(3)在(2)問條件下,當△BDE恰好是以DE為底邊的等腰三角形時,動點M相應位置記為點M′,將OM′繞原點O順時針旋轉(zhuǎn)得到ON(旋轉(zhuǎn)角在0°到90°之間);
①探究:線段OB上是否存在定點P(P不與O、B重合),無論ON如何旋轉(zhuǎn),始終保持不變,若存在,試求出P點坐標;若不存在,請說明理由;
②試求出此旋轉(zhuǎn)過程中,(NA+NB)的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】把三根長為3cm、4cm和5cm的細木棒首尾相連,能搭成一個直角三角形.
(1)如果把這三根細木棒的長度分別擴大為原來的a倍(a>1),那么所得的三根細木棒能不能搭成一個直角三角形, 為什么?
(2)如果把這三根細木棒的長度分別延長x cm(x>0),那么所得的三根細木棒還能搭成一個三角形嗎?為什么?如果能,請判斷這個三角形的形狀(銳角三角形、直角三角形還是鈍角三角形),并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如下表:
售價x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達式;
(2)設商品每天的總利潤為W(元),則當售價x定為多少元時,廠商每天能獲得最大利潤?最大利潤是多少?
(3)如果超市要獲得每天不低于1350元的利潤,且符合超市自己的規(guī)定,那么該商品每千克售價的取值范圍是多少?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】作圖與探究:
如圖,△ABC中,AB=AC.
(1)作圖:①畫線段BC的垂直平分線l,設l與BC邊交于點H;
②在射線HA上畫點D,使AD=AB,連接BD. (不寫作法,保留作圖痕跡)
(2)探究:∠D與∠C有怎樣的數(shù)量關(guān)系? 并證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,銳角∠DAB的平分線AC交⊙O于點C,作CD⊥AD,垂足為D,直線CD與AB的延長線交于點E.
(1)求證:直線CD為⊙O的切線;
(2)當AB=2BE,且CE=時,求AD的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】近年來,人們對PM2.5 (空氣中直徑小于等于2.5微米的顆粒)的關(guān)注日益密切.我市某天中PM2.5的值y1 (u g/m3) 隨時間t (h)的變化如圖所示,設y2表示0時,到t時PM2.5的最大值與最小值的差,則y2與t的函數(shù)關(guān)系大致是 ( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com