設(shè)函數(shù)f(x)在(-∞,+∞)上滿足f(2-x)=f(2+x),f(7-x)=f(7+x),且在閉區(qū)間[0,7]上,只有f(1)=f(3)=0
(1)試判斷函數(shù)y=f(x)的奇偶性;
(2)試求方程f(x)=0在閉區(qū)間[-2008,2008]上的根的個數(shù),并證明你的結(jié)論.
考點:函數(shù)奇偶性的判斷,抽象函數(shù)及其應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用條件先求出函數(shù)的周期,再求出f(-3)=f(7)≠0,而f(3)=0,f(-3)≠-f(3)根據(jù)奇偶性的定義可知該函數(shù)為非奇非偶函數(shù);
(2)根據(jù)周期函數(shù)性質(zhì)可知,只需求出一個周期里的根的個數(shù),可求得f(x)在[0,10]和[-10,0]上均有有兩個解,從而可知函數(shù)y=f(x)在[0,2008]上有402個解,在[-2008,0]上有400個解.
解答: 解:(1)由f(2-x)=f(2+x),f(7-x)=f(7+x),
得f(x)=f(4-x),且f(x)=f(14-x),
即f(4-x)=f(14-x)
∴f(x)=f(x+10),
即函數(shù)的周期為10.
又f(3)=0,而f(7)≠0,
∴f(-3)=f(7)≠0,
即f(-3)≠f(3),f(-3)≠-f(3)
故函數(shù)y=f(x)是非奇非偶函數(shù);
(2)由(1)知,f(x)=f(x+10)
又f(3)=f(1)=0⇒f(11)=f(13)=f(-7)=f(-9)=0
∵在閉區(qū)間[0,7]上,只有f(1)=f(3)=0,∴在[4,7]上無零點,
又f(7-x)=f(7+x),故在[7,10]上無零點,故在[0,10]上僅有兩個解
故f(x)在[0,10]和[-10,0]上均有有兩個解,
從而可知函數(shù)y=f(x)在[0,2008]上有402個解,在[-2008,0)上有401個解,
∴函數(shù)y=f(x)在[-2008,2008]上有803個解.
點評:本題主要考查了函數(shù)奇偶性的判斷,以及函數(shù)的周期性和根的存在性及根的個數(shù)判斷,有一定的難度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

不等式1-
3
2x+1
≤0的解集為(  )
A、(-
1
2
,1]
B、[-
1
2
,1]
C、(-∞,-
1
2
)∪[1,+∞)
D、(-∞,-
1
2
]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(
3
sin2x+2,cosx),
n
=(1,2cosx),設(shè)函數(shù)f(x)=
m
n
-3.
(Ⅰ)求f(x)的單調(diào)增區(qū)間;
(Ⅱ)在△ABC中,a、b、c分別是角A、B、C的對邊,若f(A)=1,a=
3
,且b+c=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們將不與拋物線對稱軸平行或重合且與拋物線只有一個公共點的直線稱為拋物線的切線,這個公共點稱為切點.解決下列問題:已知拋物線x2=2py(p>0)上的點(x0,3)到焦點的距離等于4,直線l:y=kx+b與拋物線相交于不同的兩點A(x1,y1)、B(x2,y2),且|x2-x1|=h(h為定值).設(shè)線段AB的中點為D,與直線l:y=kx+b平行的拋物線的切點為C.
(1)求出拋物線方程,并寫出焦點坐標(biāo)、準(zhǔn)線方程;
(2)用k、b表示出C點、D點的坐標(biāo),并證明CD垂直于x軸;
(3)求△ABC的面積,證明△ABC的面積與k、b無關(guān),只與h有關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x|x+a|-
1
2
lnx,若f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項公式是an=(n-
a
3
2+2,若數(shù)列﹛an}為遞增數(shù)列,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x∈R|x2+(2-a)x+1=0},集合B=(0,+∞),若A∩B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a1、a2、a3、a4為自然數(shù),集合A={a1,a2,a3,a4},集合B={a12,a22,a32,a42},且a1<a2<a3<a4,并滿足A∩B={a1,a4},a1+a4=10,A∪B中的所有元素之和為124,求集合A、B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(m2-1)x2-(m+1)x+n-2在R上是奇函數(shù),求實數(shù)m,n的值.

查看答案和解析>>

同步練習(xí)冊答案