已知橢圓的中心為原點(diǎn)O,長軸長為4
2
,一條準(zhǔn)線的方程為y=
8
7
7

(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)射線y=2
2
x(x≥0)與橢圓的交點(diǎn)為M,過M作傾斜角互補(bǔ)的兩條直線,分別與橢圓交于A,B兩點(diǎn)(A,B兩點(diǎn)異于M).求證:直線AB的斜率為定值.
考點(diǎn):直線與圓錐曲線的綜合問題
專題:圓錐曲線中的最值與范圍問題
分析:(Ⅰ)設(shè)橢圓方程為:
y2
a2
+
x2
b2
=1
.由題意得
2a=4
2
a2
c
=
8
7
7
,由此能求出橢圓標(biāo)準(zhǔn)方程.
(Ⅱ)設(shè)k>0,求出M(
2
2
,2).直線MA方程為y-2=k(x-
2
2
)
,直線MB方程為y-2=-k(x-
2
2
)
.分別與橢圓方程聯(lián)立,求出交點(diǎn)坐標(biāo),由此能證明直線AB的斜率為定值.
解答: (Ⅰ)解:由準(zhǔn)線為y=
8
7
7
知焦點(diǎn)在y軸上,
則可設(shè)橢圓方程為:
y2
a2
+
x2
b2
=1

2a=4
2
a2
c
=
8
7
7
,解得
a=2
2
b=1
c=
7
,
所以橢圓標(biāo)準(zhǔn)方程為:x2+
y2
8
=1

(Ⅱ)證明:∵斜率k存在,不妨設(shè)k>0,求出M(
2
2
,2).
直線MA方程為y-2=k(x-
2
2
)
,
直線MB方程為y-2=-k(x-
2
2
)

分別與橢圓方程聯(lián)立,
解出xA=
2
k2-4k
k2+8
-
2
2
,xB=
2
k2+4k
k2+8
-
2
2

yA-yB
xA-xB
=
k(xA-xB)
xA-xB
=2
2

kAB=2
2
(定值).
∴直線AB的斜率為定值2
2
點(diǎn)評:本題考查橢圓的標(biāo)準(zhǔn)方程的求法,考查直線的斜率為定值的證明,解題時(shí)要認(rèn)真審題,注意函數(shù)與方程思想的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖(1)是多面體ABC-A1B1C1的直觀圖,該多面體的三視圖如圖(2).
(1)在棱CC1(不包括點(diǎn)C、C1)上是否存在一點(diǎn)E,使EA⊥EB1,并說明理由;
(2)在(1)的條件下,求二面角A-EB1-A1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的兩頂點(diǎn)B(1,0)和C(-1,0),兩邊AB、AC所在直線的斜率之積是-2.
(1)求頂點(diǎn)A的軌跡Q;
(2)若不經(jīng)過點(diǎn)B、C的直線l與軌跡Q只有一個(gè)公共點(diǎn),且公共點(diǎn)在第一象限,試求直線l與兩坐標(biāo)軸圍成的三角形面積的最小值,并求此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinωxcosωx-cos2ωx(ω>0)的周期為
π
2

(1)求ω的值和f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)△ABC的三邊a,b,c成等比數(shù)列,且邊b所對的角為x,求此時(shí)函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}滿足a5-a1=80,前4項(xiàng)和S4=40.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足bn=
1
an
log3an,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},公差d>0,前n項(xiàng)和為Sn,S3=12,且滿足a3-a1,a4,a8成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足2an+1-an=2nbnSn,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓C:
x2
a2
+y2=1(a>1)的上頂點(diǎn)為A,離心率為
6
3
,若不過點(diǎn)A的動直線l與橢圓C相交于P,Q兩點(diǎn),且
AP
AQ
=0.
(1)求橢圓C的方程;
(2)若直線AP的斜率為1,求直線PQ的方程;
(3)求證:直線l過定點(diǎn),并求出該定點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義函數(shù)f(x)=-x3+ax2+b(a,b∈R).
(Ⅰ)f′(x)是f(x)的導(dǎo)函數(shù),若不等式|f′(x)|≤1對任意的x∈[0,1]恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若b<0,函數(shù)f(x)有兩個(gè)零點(diǎn)滿足x1∈(0,1),x2∈(1,2),求a-2b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
4
-
y2
21
=1上的點(diǎn)P到一個(gè)焦點(diǎn)的距離為6,則點(diǎn)P到另一個(gè)焦點(diǎn)的距離為
 

查看答案和解析>>

同步練習(xí)冊答案