過點(diǎn)P(2,0)作圓O:x2+y2=1的兩條切線,切點(diǎn)分別為A和B,則弦長|AB|=( 。
A、
3
B、
2
C、2
D、1
考點(diǎn):直線與圓相交的性質(zhì),圓的切線方程
專題:計(jì)算題,直線與圓
分析:求出以O(shè)P為直徑的圓的方程,與圓O:x2+y2=1相減,可得公共弦的方程,利用勾股定理,即可求出弦長|AB|.
解答: 解:由題意,以O(shè)P為直徑的圓的方程為(x-1)2+y2=1
與圓O:x2+y2=1相減,可得x=
1
2
,
∴弦長|AB|=2
1-
1
4
=
3

故選:A.
點(diǎn)評:本題考查了直線與圓的位置關(guān)系,直線與圓的位置關(guān)系由d與r的大小關(guān)系確定,當(dāng)d>r時,直線與圓相離;當(dāng)d=r時,直線與圓相切;當(dāng)d<r時,直線與圓相交(d表示圓心到直線的距離,r表示圓的半徑).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系中,已知A(1,0,-3),B(4,-2,1),則|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a=30.7,b=0.73,c=log30.7,則a,b,c的大小關(guān)系是( 。
A、c<a<b
B、b<c<a
C、c<b<a
D、b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)f(x)=2sin(2x-
π
6
)的圖象向左平移m個單位(m>0),若所得的圖象關(guān)于直線x=
π
6
對稱,則m的最小值為( 。
A、
π
12
B、
π
6
C、
π
4
D、
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex-e(e為自然常數(shù)),則該函數(shù)曲線在x=1處的切線方程是( 。
A、ex-y=0
B、ex-y-e=0
C、ex-y+1=0
D、ex-y+1-e2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩曲線y=-x2+2x,y=2x2-4x所圍成圖形的面積S等于( 。
A、-4B、0C、2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={l|直線l與直線y=2x相交,且以交點(diǎn)的橫坐標(biāo)為斜率}
(1)點(diǎn)(-2,2)到M中哪條直線的距離最?
(2)設(shè)a∈R+,點(diǎn)P(-2,a)到M中的直線距離的最小值記為dmin,求dmin的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若sin2A=sin2B+sin2C,且sinA=2sinBcosC,判斷△ABC形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式(1-x)(x+2)≥0的解集是
 
(用區(qū)間表示)

查看答案和解析>>

同步練習(xí)冊答案