不等式
2-x
x+1
>0
的解集是
 
考點:其他不等式的解法
專題:計算題
分析:由已知可得,(x+1)(x-2)<0,解二次不等式即可求解
解答: 解:∵
2-x
x+1
>0

∴(x+1)(x-2)<0
∴-1<x<2
故答案為:(-1,2)
點評:本題主要考查了分式不等式的求解,屬于基礎試題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

圖①、圖②、圖③分別表示甲、乙、丙三人由A地到B地的路線圖(箭頭表示行進的方向).圖②中E為AB的中點,圖③中AJ>JB.判斷三人行進路線長度的大小關系為( 。
A、甲=乙=丙
B、甲<乙<丙
C、乙<丙<甲
D、丙<乙<甲

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)=(k-2)x2+(k-m)x+3(其中x∈(-1,m))是偶函數(shù),求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若變量x,y滿足約束條件
2x+y-2≥0
x-2y+4≥0
3x-y-3≤0
,則x2+y2的最大值和最小值的和為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanα=3,則
sinα+cosα
sinα-cosα
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足:對任意實數(shù)x1,x2,總有f(x1+x2)=f(x1)+f(x2)+1恒成立,f(1)=1,且對任意正整數(shù)n,有an=
1
f(n)
bn=f(
1
2n
)+1

(1)求數(shù)列{an},{bn}的通項公式;
(2)記Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…+bnbn+1,比較
4
3
Sn
與Tn的大小關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等比數(shù)列{an}的首項a1和公比q都是正數(shù),且q≠1,則下列判斷正確的是( 。
A、a1+a8>a4+a5
B、a1+a8<a4+a5
C、a1+a8=a4+a5
D、a1+a8與a4+a5的大小關系不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}滿足a1=1,an+1=anan,則數(shù)列{an}的通項公式an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合{a,b,c}的所有子集是
 
真子集是
 
;非空真子集是
 

查看答案和解析>>

同步練習冊答案