12.對于非空實數(shù)集A,定義A*={z|對任意x∈A,z≥x}.設(shè)非空實數(shù)集C⊆D?(-∞,1].現(xiàn)給出以下命題:
①對于任意給定符合題設(shè)條件的集合C,D,必有D*⊆C*;
②對于任意給定符合題設(shè)條件的集合C,D,必有C*∩D≠∅;
③對于任意給定符合題設(shè)條件的集合C,D,必有C∩D*=∅.
以上命題正確的是①③.

分析 由A*={z|?x∈A,z≥x}.可知:數(shù)集A*是數(shù)集A的所有上界組成的集合.進(jìn)而可通過舉例否定②,對于①③需要利用集合間的關(guān)系去證明.

解答 解:由A*={z|?x∈A,z≥x}.可知:數(shù)集A*是數(shù)集A的所有上界組成的集合.
①分別用Amax、Amin表示集合A的所有元素(數(shù))的最大值、最小值.
由C⊆D及A*的定義可知:Cmax≤C*min,Dmax≤D*min,C*min≤Dmax,
∴C*min≤D*min,∴必有D*⊆C*.故①正確.
②若設(shè)C=(-∞,1)=D,滿足C⊆D,而C*={1},此時C*∩D=∅,故②不正確.
③若設(shè)C=(-∞,0),D=(-∞,1),滿足C⊆D,而D*=(0,1),此時C∩D*=∅,故③正確.
故答案為:①③.

點評 本題考查了新定義,理解數(shù)集A*是數(shù)集A的所有上界組成的集合及集合間的關(guān)系是解決問題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某學(xué)生離家步行去學(xué)校,勻速走了一段路后,由于怕遲到,所以就勻速跑完余下的路程,在如圖中縱軸表示離學(xué)校的距離d,橫軸表示出發(fā)后的時間t,則如圖中的四個圖形中較符合該學(xué)生走法的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,AB=AC,D為BC邊上一點,E為AD上一點,且滿足∠BDE=2∠CED=∠BAC.求證:BD=2CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在正方體AC1中,A1E1=CE,A1F1=CF.求證:E1F1$\underset{∥}{=}$EF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列各組函數(shù)表示同一函數(shù)的是( 。
A.f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2B.f(x)=1,g(x)=x0
C.f(x)=2x-1,f(t)=2t-1D.f(x)=x+1,g(x)=$\frac{{x}^{2}-1}{x-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,求證,$si{n}^{2}\frac{A}{2}$+$si{n}^{2}\frac{B}{2}$+$si{n}^{2}\frac{C}{2}$=1-2sin$\frac{A}{2}$sin$\frac{B}{2}$sin$\frac{C}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.函數(shù)y=f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的一段圖象如圖,求f(x)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=log2(3x+$\frac{a}{x}$-2)在區(qū)間[1,+∞)上單調(diào)遞增,那么實數(shù)a的取值范圍是( 。
A.(-1,3)B.(-1,3]C.[0,3]D.[0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.從0到9的所有自然數(shù)中任意抽取兩個相加所得和不同且為奇數(shù)的不同取法有15種.

查看答案和解析>>

同步練習(xí)冊答案