【題目】已知橢圓:的離心率,該橢圓中心到直線的距離為.
(1)求橢圓的方程;
(2)是否存在過點的直線,使直線與橢圓交于,兩點,且以為直徑的圓過定點?若存在,求出所有符合條件的直線方程;若不存在,請說明理由.
【答案】(1) .
(2) 存在直線:或:,使得以為直徑的圓經(jīng)過點.
【解析】分析:由,該橢圓中心到直線的距離為,求出橢圓方程;
(2)先假設(shè)存在這樣的直線,設(shè)出直線方程(注意考慮斜率),與橢圓聯(lián)立,考慮然后設(shè),,利用韋達定理,利用為直徑的圓過定點,轉(zhuǎn)化,轉(zhuǎn)化坐標(biāo)構(gòu)造方程進行求解。
詳解:(1)直線的一般方程為,
依題意得,解得,
所以橢圓的方程為.
(2)當(dāng)直線的斜率不存在時,直線即為軸,此時,為橢圓的短軸端點,以為直徑的圓經(jīng)過點.
當(dāng)直線的斜率存在時,設(shè)其斜率為,由,
得.
所以,得.
設(shè),,則,①
而 .
因為以為直徑的圓過定點,所以,則,即.
所以.②
將①式代入②式整理解得.
綜上可知,存在直線:或:,使得以為直徑的圓經(jīng)過點.
點晴:本題考查直線與橢圓的位置關(guān)系,這類題目一般涉及設(shè)直線方程,然后和橢圓聯(lián)立,設(shè)點,考慮,然后利用韋達定理,接下來就是對題干的轉(zhuǎn)化啦,本題中典型的垂直問題,主要轉(zhuǎn)化方向就是向量點乘,因為斜率的話還需要考慮斜率是否存在。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某教育主管部門到一所中學(xué)檢查學(xué)生的體質(zhì)健康情況.從全體學(xué)生中,隨機抽取12名進行體質(zhì)健康測試,測試成績(百分制)以莖葉圖形式表示如圖所示.根據(jù)學(xué)生體質(zhì)健康標(biāo)準(zhǔn),成績不低于76的為優(yōu)良.
(1)寫出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)將頻率視為概率.根據(jù)樣本估計總體的思想,在該校學(xué)生中任選3人進行體質(zhì)健康測試,求至少有1人成績是“優(yōu)良”的概率;
(3)從抽取的12人中隨機選取3人,記ξ表示成績“優(yōu)良”的學(xué)生人數(shù),求ξ的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0)的焦距為4,其短軸的兩個端點與長軸的一個端點構(gòu)成正三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)F為橢圓C的左焦點,M為直線x=﹣3上任意一點,過F作MF的垂線交橢圓C于點P,Q.證明:OM經(jīng)過線段PQ的中點N.(其中O為坐標(biāo)原點)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定一個數(shù)列{an},在這個數(shù)列里,任取m(m≥3,m∈N*)項,并且不改變它們在數(shù)列{an}中的先后次序,得到的數(shù)列{an}的一個m階子數(shù)列.
已知數(shù)列{an}的通項公式為an= (n∈N* , a為常數(shù)),等差數(shù)列a2 , a3 , a6是數(shù)列{an}的一個3子階數(shù)列.
(1)求a的值;
(2)等差數(shù)列b1 , b2 , …,bm是{an}的一個m(m≥3,m∈N*)階子數(shù)列,且b1= (k為常數(shù),k∈N* , k≥2),求證:m≤k+1
(3)等比數(shù)列c1 , c2 , …,cm是{an}的一個m(m≥3,m∈N*)階子數(shù)列,求證:c1+c1+…+cm≤2﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行促銷活動,有兩個摸獎箱,箱內(nèi)有一個“”號球,兩個“”號球,三個“”號球、四個無號球,箱內(nèi)有五個“”號球,五個“”號球,每次摸獎后放回,每位顧客消費額滿元有一次箱內(nèi)摸獎機會,消費額滿元有一次箱內(nèi)摸獎機會,摸得有數(shù)字的球則中獎,“”號球獎元,“”號球獎元,“”號球獎元,摸得無號球則沒有獎金。
(1)經(jīng)統(tǒng)計,顧客消費額服從正態(tài)分布,某天有位顧客,請估計消費額(單位:元)在區(qū)間內(nèi)并中獎的人數(shù).(結(jié)果四舍五入取整數(shù))
附:若,則,.
(2)某三位顧客各有一次箱內(nèi)摸獎機會,求其中中獎人數(shù)的分布列.
(3)某顧客消費額為元,有兩種摸獎方法,
方法一:三次箱內(nèi)摸獎機會;
方法二:一次箱內(nèi)摸獎機會.
請問:這位顧客選哪一種方法所得獎金的期望值較大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn= ﹣ (n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)若bn=anlog3an , 求數(shù)列{bn}的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電腦公司有6名產(chǎn)品推銷員,其工作年限與推銷金額數(shù)據(jù)如下表:
推銷員編號 | 1 | 2 | 3 | 4 | 5 |
工作年限/年 | 3 | 5 | 6 | 7 | 9 |
推銷金額/萬元 | 2 | 3 | 3 | 4 | 5 |
(1)求年推銷金額關(guān)于工作年限的線性回歸方程;
(2)若第6名推銷員的工作年限為11年,試估計他的年推銷金額.
附:線性回歸方程中,,,其中為樣本平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=lnx﹣ax,g(x)=ex﹣ax,其中a為實數(shù).
(1)若f(x)在(1,+∞)上是單調(diào)減函數(shù),且g(x)在(1,+∞)上有最小值,求a的取值范圍;
(2)若g(x)在(﹣1,+∞)上是單調(diào)增函數(shù),試求f(x)的零點個數(shù),并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com