8.設(shè)數(shù)列{an}是公差d<0的等差數(shù)列,Sn為其前n項(xiàng)和,若S6=5a1+10d,則Sn取最大值時(shí),n=5或6.

分析 由S6=5a1+10d,可得6a1+$\frac{6×5}{2}d$=5a1+10d,化為a6=0.又公差d<0,即可得出.

解答 解:由S6=5a1+10d,可得6a1+$\frac{6×5}{2}d$=5a1+10d,化為a1+5d=0,∴a6=0.
又公差d<0,
因此Sn取最大值時(shí),n=5或6.
故答案為:5或6.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、數(shù)列的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖所示:“十字形”公路的交叉處周圍呈扇形形狀,某市規(guī)劃擬在這塊扇形土塵修建一個(gè)圓形廣揚(yáng),已知∠A0B=60°,AB的長(zhǎng)度=100πm,怎樣設(shè)計(jì)廣場(chǎng)的占地面積最大?其值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}滿足a1=2,anan+1=2n,則a1+a2+a3+…+a20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖是底面積為$\sqrt{3}$,體積為$\sqrt{3}$的正三棱錐的主視圖(等腰三角形)和左視圖(等邊三角形),此正三棱錐的側(cè)視圖的面積為( 。
A.$\frac{3\sqrt{3}}{2}$B.3C.$\sqrt{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知△ABC中,角A、B、C的對(duì)邊分別為a、b、c,a=$\sqrt{2}$,向量$\overrightarrow{m}$=(-1,1),$\overrightarrow{n}$=(cosBcosC,sinBsinC-$\frac{\sqrt{2}}{2}$),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(Ⅰ)求A的大。
(Ⅱ)當(dāng)sinB+cos($\frac{7π}{12}$-C)取得最大值時(shí),求角B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知在Rt△ABC中,∠C=90°,∠A≠∠B,設(shè)sinB=n,當(dāng)∠B是最小的內(nèi)角時(shí),n的取值范圍是(  )
A.0<n<$\frac{\sqrt{2}}{2}$B.0<n<$\frac{1}{2}$C.0<n<$\frac{\sqrt{3}}{3}$D.0<n<$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求證:
(Ⅰ)已知a,b,c∈R,求證:a2+b2+c2≥ab+bc+ca
(Ⅱ)若a>0,b>0,且a+b=1,求證:$\frac{1}{a}$+$\frac{1}$≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.過拋物線y2=2px(p>0)的焦點(diǎn)F作傾斜角為θ的直線交拋物線于A、B兩點(diǎn),設(shè)△AOB的面積S(O為原點(diǎn)).
(1)用θ、p表示S;
(2)求S的最小值;當(dāng)最小值為4時(shí),求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{cx+1(0<x<c)}\\{{2^{-\frac{x}{c^2}}}+1(c≤x<1)}\end{array}}\right.$滿足f(c2)=$\frac{9}{8}$.則f(x)的值域?yàn)椋?,$\frac{5}{4}$].

查看答案和解析>>

同步練習(xí)冊(cè)答案