在△ABC中,三個內(nèi)角A,B,C所對應(yīng)邊分別為a,b,c,且asinAsinB+bcos2A=
2
a.
(Ⅰ)求
b
a
的值;
(Ⅱ)若A,B,C成等差數(shù)列,求cosC的大。
考點(diǎn):正弦定理,等差數(shù)列的性質(zhì)
專題:三角函數(shù)的求值
分析:(Ⅰ)已知等式利用正弦定理化簡得到sinB=
2
sinA,所求式子再利用正弦定理化簡即可求出值;
(Ⅱ)由A,B,C成等差數(shù)列,利用等差數(shù)列的性質(zhì)及內(nèi)角和定理求出B的度數(shù),代入sinB=
2
sinA中求出sinA的值,確定出cosA的值,cosC變形為-cos(A+B),利用兩角和與差的余弦函數(shù)公式化簡后,把各自的值代入計(jì)算即可求出值.
解答: 解:(Ⅰ)∵在△ABC中,asinAsinB+bcos2A=
2
a,
∴由正弦定理化簡得:sin2AsinB+sinBcos2A=sinB=
2
sinA,
b
a
=
sinB
sinA
=
2
;
(Ⅱ)∵A,B,C成等差數(shù)列,
∴2B=A+C,
∵A+B+C=π,
∴B=
π
3

∵sinB=
2
sinA,
∴sinA=
2
2
×
3
2
=
6
4
,且0<A<B=
π
3

∴cosA=
1-sin2A
=
10
4
,
則cosC=-cos(A+B)=-cosAcosB+sinAsinB=-
10
4
×
1
2
+
6
4
×
3
2
=
3
2
-
10
8
點(diǎn)評:此題考查了正弦定理,等差數(shù)列的性質(zhì),熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)數(shù)范圍內(nèi),i為虛數(shù)單位,若實(shí)數(shù)x,y滿足(1+i)x+(1-i)y=2 則x-y的值是( 。
A、1B、0C、-2D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+S2=12,q=
S2
b2

(1)求an與bn
(2)設(shè)數(shù)列{cn}滿足cn=|bn-a5|,求{cn}的前項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}為等差數(shù)列,Sn為其前n項(xiàng)和,且2Sn=an+2n2(n∈N*).
(1)求an,Sn;
(2)若ak,a2k-2,a2k+1(k∈N?)是等比數(shù)列{bn}的前三項(xiàng),設(shè)Tn=a1b1+a2b2+a3b3+…+anbn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-4≤x≤a+3},B={x|x<-2或x≥4},若A∩B=A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個袋子裝有大小完全相同的9個球,其中5個紅球,編號分別為1,2,3,4,5;4個白球,編號分別為1,2,3,4.
(1)從袋中任意取出3個球,求取出的3個球的編號為連續(xù)的自然數(shù)的概率;
(2)從袋中任意取出4個球,記ξ為取出的4個球中編號的最大值,求ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)x,y滿足
x≤y
y≤10-2x
x≥1
,向量
a
=(2x-y,m),
b
=(-1,1).若
a
b
,則實(shí)數(shù)m的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個容量為80的樣本,把它分為6組,第三組到第六組的頻數(shù)分別為10,12,14,20,第一組的頻率為0.2,那么第一組的頻數(shù)是
 
;第二組的頻率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|2x2+7x-15<0},B={x|x2+ax+b≤0},若A∩B=∅,A∪B={x|-5<x≤2},則實(shí)數(shù)a,b的值分別是( 。
A、2,4
B、
1
2
,4
C、
11
2
,5
D、-
7
2
,3

查看答案和解析>>

同步練習(xí)冊答案