精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=x3+ax-2,(aR).
(l)若f(x)在區(qū)間(1,+)上是增函數,求實數a的取值范圍;
(2)若,且f(x0)=3,求x0的值;
(3)若,且在R上是減函數,求實數a的取值范圍。

(1)的取值范圍是;(2),或;(3).

解析試題分析:(1)求導得:,因為在區(qū)間上是增函數,所以上恒成立,即恒成立,只需大于等于的最大值即可;
(2),即.分段函數求值就分情況分別求.
(3)上是減函數,則兩段都遞減且時兩段的端點重合,由此即可求出的取值范圍.
試題解析:(1),在區(qū)間上是增函數,所以,在上恒成立,恒成立,所以,的取值范圍是       4分
(2)    即 
,即
所以,或.                  9分
(3)上是減函數,所以
解之得.                       13分
考點:1、函數的單調性及函數的值;2、分段函數.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數f(x)是定義在R上的偶函數,且x≥0時,.
(1)求f(-1)的值;
(2)求函數f(x)的值域A;
(3)設函數的定義域為集合B,若AÍB,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設定義域為的函數
(Ⅰ)在平面直角坐標系內作出函數的圖象,并指出的單調區(qū)間(不需證明);
(Ⅱ)若方程有兩個解,求出的取值范圍(只需簡單說明,不需嚴格證明).
(Ⅲ)設定義為的函數為奇函數,且當時,的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)若,求實數x的取值范圍;
(2)求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數為實常數).
(1)若函數圖像上動點到定點的距離的最小值為,求實數的值;
(2)若函數在區(qū)間上是增函數,試用函數單調性的定義求實數的取值范圍;
(3)設,若不等式有解,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求函數的定義域和值域;(2)若函數有最小值為,求的值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

上海某化學試劑廠以x千克/小時的速度生產某種產品(生產條件要求),為了保證產品的質量,需要一邊生產一邊運輸,這樣按照目前的市場價格,每小時可獲得利潤是元.
(1)要使生產運輸該產品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產運輸900千克該產品獲得的利潤最大,問:該工廠應該選取何種生產速度?并求最大利潤.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知.
(Ⅰ)當時,判斷的奇偶性,并說明理由;
(Ⅱ)當時,若,求的值;
(Ⅲ)若,且對任何不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中是實數,設為該函數的圖象上的兩點,且.
⑴指出函數的單調區(qū)間;
⑵若函數的圖象在點處的切線互相垂直,且,求的最小值;
⑶若函數的圖象在點處的切線重合,求的取值范圍.

查看答案和解析>>

同步練習冊答案