4.從52張撲克牌中任取5張,問其中有4張點(diǎn)數(shù)相同的取法有多少種.

分析 從52張撲克牌中任取5張,其中有4張點(diǎn)數(shù)相同的取法,先從同一點(diǎn)數(shù)中取4張,再從余下的12個(gè)點(diǎn)數(shù)中取1個(gè),利用乘法原理,即可得出結(jié)論.

解答 解:從52張撲克牌中任取5張,其中有4張點(diǎn)數(shù)相同的取法,先從同一點(diǎn)數(shù)中取4張,有13種取法,再從余下的12個(gè)點(diǎn)數(shù)中取1個(gè),有12種取法,利用乘法原理有13×12=156種.

點(diǎn)評(píng) 本題考查乘法原理的運(yùn)用,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.(x2-1)2(x-1)6的展開式中x9項(xiàng)的系數(shù)-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.解不等式:
(1)|x-1|>1;
(2)|x-1|+|x-3|>4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x2-2kx+2,當(dāng)x≥-1時(shí),恒有f(x)≥k,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列說法中,正確的是( 。
A.命題“$a>b\;,\;則\frac{1}{a}<\frac{1}$”的逆命題是真命題
B.對(duì)于函數(shù)y=f(x),x∈R“y=|f(x)|的圖象關(guān)于y軸對(duì)稱”是“y=f(x)是奇函數(shù)”的充要條件
C.線性回歸方程$\widehaty=\widehatbx+\widehata$對(duì)應(yīng)的直線一定經(jīng)過其樣本數(shù)據(jù)點(diǎn)(x1,y1),(x2,y2),…,(xn,yn)中的一個(gè)點(diǎn)
D.命題“$?{x_0}∈R\;,\;x_0^2-{x_0}>0$”的否定是“?x∈R,x2-x≤0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.給出下列函數(shù):
(1)f(x)=x2,g(x)=($\frac{1}{x}$)-2;
(2)f(x)=$\root{2n+1}{{x}^{2n+1}}$(n∈N*),g(x)=x;
(3)f(x)=$\sqrt{{x}^{2}-2x+1}$,g(x)=x-1;
(4)f(x)=$\frac{|x+2|}{2(x+2)}$,g(x)=$\left\{\begin{array}{l}{\frac{1}{2},x≥-2}\\{-\frac{1}{2},x<-2}\end{array}\right.$
其中能表示同一函數(shù)的共有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=(x2-a+1)ex,g(x)=(x2-2)ex+2
(1)若f(x)在[-3,1]上是單調(diào)函數(shù),求a的取值范圍;
(2)若f(x)有兩個(gè)不同的極值點(diǎn)m,n(m<n),且2(m+n)≤m-1,記F(x)=e2f(x)+g(x),求F(m)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=ax2+x+1.
(1)若a=-1,求f(x)在區(qū)間[-1,3]上的值域.
(2)如果當(dāng)x∈(0,2]時(shí),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知:函數(shù)f(x),g(x)分別為R上的奇函數(shù)和偶函數(shù),且f(x)-g(x)=2x
(1)求f(x),g(x);
(2)判斷f(x)的單調(diào)性;
(3)若f(x2+1)+f(mx)≥0對(duì)x>0恒成立,求是實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案