已知函數(shù)f(x)=logm
1+x
x-1
(其中m>0且m≠1).
(1)判斷函數(shù)f(x)的奇偶性,并加以證明;
(2)當(dāng)0<m<1時(shí),判斷函數(shù)f(x)在區(qū)間(1,+∞)上的單調(diào)性,并加以證明.
考點(diǎn):命題的真假判斷與應(yīng)用,復(fù)合命題的真假
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)求出f(x)的定義域,根據(jù)f(-x)與f(x)的關(guān)系判定f(x)的奇偶性;
(2)化簡f(x)的解析式,判定當(dāng)1<x1<x2時(shí),在0<m<1的條件下,f(x1)與f(x2)的大小,從而證明f(x)在區(qū)間(1,+∞)上的單調(diào)性.
解答: 解:(1)∵f(x)=logm
1+x
x-1

1+x
x-1
>0,
解得-1<x<1;
∴函數(shù)f(x)的定義域是(-1,1);
又f(-x)=logm
1-x
-x-1

=logm
x-1
x+1

=logm(
1+x
x-1
)
-1

=-logm
1+x
x-1

=-f(x),
∴f(x)是定義域上的奇函數(shù);
(2)當(dāng)0<m<1時(shí),f(x)在(1,+∞)上是增函數(shù);
證明如下:設(shè)任意的1<x1<x2,
∵f(x)=logm
1+x
x-1

=logm
x-1+2
x-1

=logm(1+
2
x-1
),
∴0<x1-1<x2-1,
1
x1-1
1
x2-1
>0,
∴1+
2
x1-1
>1+
2
x2-1
>1;
又∵0<m<1,
∴l(xiāng)ogm(1+
2
x1-1
)<logm(1+
2
x2-1
),
即f(x1)<f(x2);
∴f(x)在區(qū)間(1,+∞)上是增函數(shù).
點(diǎn)評:本題考查了函數(shù)的奇偶性和單調(diào)性以及對數(shù)函數(shù)的性質(zhì)和求函數(shù)的定義域問題,是綜合題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法錯(cuò)誤的是( 。
A、若命題p:?x∈R,x2-x+1=0,則¬p:?x∈R,x2-x+1≠0
B、若命題p:?x∈R,cosx=1,q:?x∈R,x2-x+1>0,則“p∧¬q”為假命題.
C、命題“若a=0,則ab=0”的否命題是:“若a≠0,則ab≠0”
D、“sinθ=
1
2
”是“θ=30°”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
sin2x
sinx
+2sinx.
(1)求函數(shù)f(x)的定義域和最小正周期;
(2)若f(α)=2,α∈[0,π],求f(α+
π
12
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足an+1-an=2,a1=2,等比數(shù)列{bn}滿足b1=a1,b4=a8
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人玩投籃游戲,規(guī)則如下:兩人輪流投籃,每人至多投2次,甲先投,若有人投中即停止投籃,結(jié)束游戲,已知甲每次投中的概率為
1
4
,乙每次投中的概率為
1
3
,求游戲結(jié)束時(shí).
(Ⅰ)甲、己投籃次數(shù)之和為3的概率;
(Ⅱ)乙投籃次數(shù)不超過1次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,且滿足a2=3,a4+a5+a6=18,數(shù)列{bn}滿足b1=1,bn+1=2bn+1
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若cn=an•bn,試求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,當(dāng)n≥2,n∈N*時(shí),an=3an-1-1,數(shù)列{bn}的前n項(xiàng)和Sn滿足Sn=2n2+2n-2,n∈N*.(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)若cn=(an-
1
2
)•bn(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x、y滿足條件
y≥2|x|-1
y≤x+1
,則z=x+3y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中正確的有
 

①平均數(shù)不受少數(shù)幾個(gè)極端值的影響,中位數(shù)受樣本中的每一個(gè)數(shù)據(jù)影響.
②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大.
③用樣本的頻率分布估計(jì)總體分布的過程中,樣本容量越大,估計(jì)越準(zhǔn)確.
④一組數(shù)據(jù)的方差越大,說明這組數(shù)據(jù)的波動越大.
⑤向一個(gè)圓面內(nèi)隨機(jī)地投一個(gè)點(diǎn),如果該點(diǎn)落在圓內(nèi)任意一點(diǎn)都是等可能的,則該隨機(jī)試驗(yàn)的數(shù)學(xué)模型是古典概型.

查看答案和解析>>

同步練習(xí)冊答案