分析 化簡(jiǎn)y=2x2+$\frac{a}{{x}^{2}}$-2=2(x2+$\frac{\frac{a}{2}}{{x}^{2}}$)-2,從而分類討論以確定函數(shù)的性質(zhì),從而結(jié)合基本不等式求解.
解答 解:y=2x2+$\frac{a}{{x}^{2}}$-2=2(x2+$\frac{\frac{a}{2}}{{x}^{2}}$)-2,
①當(dāng)0<a≤2時(shí),0<$\frac{a}{2}$≤1;
由對(duì)勾函數(shù)的性質(zhì)可得,
y=2(x2+$\frac{\frac{a}{2}}{{x}^{2}}$)-2在[1,+∞)上是增函數(shù),
故ymin=2+a-2=a;
②當(dāng)a>2時(shí),$\frac{a}{2}$>1,
由基本不等式可得,
y=2x2+$\frac{a}{{x}^{2}}$-2≥2$\sqrt{2a}$-2,
(當(dāng)且僅當(dāng)x2=$\frac{\sqrt{2a}}{2}$時(shí),等號(hào)成立);
故函數(shù)y=2x2+$\frac{a}{{x}^{2}}$-2(a>0)的最小值為2$\sqrt{2a}$-2.
點(diǎn)評(píng) 本題考查了函數(shù)的化簡(jiǎn)與應(yīng)用,同時(shí)考查了基本不等式的應(yīng)用及分類討論的思想應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com