分析 (1)由題意得$\left\{\begin{array}{l}{x-1≥0}\\{4-x≥0}\end{array}\right.$,從而可得A={1,2,3,4};
(2)化簡B=(a-1,a+1);從而分A∩B={1,2}或{2,3}或{3,4}進行討論即可.
解答 解:(1)由題意得,$\left\{\begin{array}{l}{x-1≥0}\\{4-x≥0}\end{array}\right.$,
又∵x∈z,
∴A={1,2,3,4};
(2)B={x|-1<x-a<1,a∈R}=(a-1,a+1);
∵集合A∩B中恰好有兩個元素,
∴A∩B={1,2}或{2,3}或{3,4};
∴$\left\{\begin{array}{l}{a-1<1}\\{2<a+1≤3}\end{array}\right.$或$\left\{\begin{array}{l}{1≤a-1<2}\\{3<a+1≤4}\end{array}\right.$或$\left\{\begin{array}{l}{2≤a-1<3}\\{a+1>4}\end{array}\right.$,
解得,1<a<2或2<a<3或3<a<4.
點評 本題考查了集合的化簡與運算,同時考查了分類討論的思想.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,+∞) | B. | (-∞-$\frac{1}{3}$)∪($\frac{1}{2}$,+∞) | C. | [-$\frac{1}{3}$,+∞) | D. | [$\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4a | B. | 4a-m | C. | 4a+2m | D. | 4a-2m |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 雙曲線和一條直線 | B. | 雙曲線和一條射線 | ||
C. | 雙曲線的一支和一條射線 | D. | 雙曲線的一支和一條直線 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com