【題目】下列命題為真命題的是(

A.為真命題,則為真命題;

B.”是“”的充分不必要條件;

C.命題“若,則”的否命題為“若,則”;

D.已知命題,使得,則,使得。

【答案】B

【解析】

判斷出、的真假情況,可得出的真假,可判斷A選項中命題的正誤;解方程,可判斷出B選項中命題的正誤;利用否命題與原命題之間的關系可判斷出C選項中命題的正誤;由特稱命題的否定可判斷出D選項中命題的正誤.

對于A選項,若為真命題,則一真一假或兩個都是真命題,若一真一假,則為假命題,A選項中的命題為假命題;

對于B選項,解方程,得,所以,“”是

”的充分不必要條件,B選項中的命題為真命題;

對于C選項,命題“若,則”的否命題為“若,則

”,C選項中的命題為假命題;

對于D選項,由特稱命題的否定可知,,使得D選項中的命題為假命題.故選:B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一個“蝴蝶形圖案(陰影區(qū)域)”,其中是過拋物線的兩條互相垂直的弦(點在第二象限),且交于點,點軸上一點,,其中為銳角

(1)設線段的長為,將表示為關于的函數(shù)

(2)求“蝴蝶形圖案”面積的最小值,并指出取最小值時的大小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為的函數(shù)上有最大值1,設

(1)求的值;

(2)若不等式上恒成立,求實數(shù)的取值范圍;

(3)若函數(shù)有三個不同的零點,求實數(shù)的取值范圍(為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知指數(shù)函數(shù)的圖象經過點,在區(qū)間的最小值;

1)求函數(shù)的解析式;

2)求函數(shù)的最小值的表達式;

3)是否存在同時滿足以下條件:;②當的定義域為時,值域為;若存在,求出m,n的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC中,BC邊上的高所在直線的方程為x+2y+3=0,∠A的平分線所在直線的方程為y=0,若點B的坐標為(﹣1,﹣2),分別求點A和點C的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學有初中學生1800人,高中學生1200人.為了解全校學生本學期開學以來的課外閱讀時間,學校采用分層抽樣方法,從中抽取了100名學生進行問卷調查.將樣本中的“初中學生”和“高中學生”,按學生的課外閱讀時間(單位:小時)各分為5組:,,,,得其頻率分布直方圖如圖所示.

1)估計全校學生中課外閱讀時間在小時內的總人數(shù)約是多少;

2)從全校課外閱讀時間不足10個小時的樣本學生中隨機抽取3人,求至少有2個初中生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知拋物線的頂點為,與軸的交點為,則直線稱為拋物線的伴隨直線.

(1)求拋物線的伴隨直線的表達式;

(2)已知拋物線的伴隨直線為,且該拋物線與軸有兩個不同的公共點,求的取值范圍.

(3)已知,若拋物線的伴隨直線為,且該拋物線與線段恰有1個公共點,求的取值范圍(直接寫出答案即可)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為雙曲線的左、右焦點,過作垂直于軸的直線,并在軸上方交雙曲線于點,且.

(1)求雙曲線的方程;

(2)過雙曲線上一點作兩條漸近線的垂線,垂足分別是,試求的值;

(3)過圓上任意一點作切線交雙曲線兩個不同點,中點為,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據不完全統(tǒng)計,某廠的生產原料耗費(單位:百萬元)與銷售額(單位:百萬元)如下:

2

4

6

8

30

40

50

70

變量、為線性相關關系.

1)求線性回歸方程必過的點;

2)求線性回歸方程;

3)若實際銷售額要求不少于百萬元,則原材料耗費至少要多少百萬元。

,

查看答案和解析>>

同步練習冊答案