13.若一個四棱錐的底面是邊長為4的正方形,各側(cè)棱都等于3,那么這個四棱錐的高等于( 。
A.1B.$\sqrt{2}$C.5D.$\sqrt{7}$

分析 四棱錐的底面ABCD是邊長為4的正方形,各側(cè)棱都等于3,連結(jié)AC,過P作PO⊥底面ABCD,交AC于點O,先由勾股定理求出AO,再利用勾股定理能求出這個四棱錐的高PO.

解答 解:如圖,四棱錐的底面ABCD是邊長為4的正方形,各側(cè)棱都等于3,
連結(jié)AC,過P作PO⊥底面ABCD,交AC于點O,
∴AO=$\frac{1}{2}AC=\frac{1}{2}\sqrt{16+16}$=2$\sqrt{2}$,
∴這個四棱錐的高PO=$\sqrt{P{A}^{2}-A{O}^{2}}$=$\sqrt{9-8}$=1.
故選:A.

點評 本題考查四棱錐的高的求法,是基礎(chǔ)題,解題時要認真審題,注意勾股定理的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

9.已知向量$\overrightarrow{a}$=($\sqrt{3}$,-1),$\overrightarrow$=( $\sqrt{3}$,1),則<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知四棱錐P-ABCD中,四邊形ABCD是邊長為2的菱形,AC交BD于F,E為PA的中點,PC=3,且PC⊥平面ABCD.
(1)求證:平面EBD⊥平面ABCD;
(2)若三棱錐P-BCF的體積為2$\sqrt{3}$,求點E到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若a>0,$x=\frac{{\sqrt{{{(sin1)}^a}}+\sqrt{{{(cos1)}^a}}}}{{\sqrt{{{(sin1)}^a}+{{(cos1)}^a}}}}$,$y=\sqrt{{{(sin1)}^a}+{{(cos1)}^a}}$,$z=\frac{{2{{(sin1)}^a}•{{(cos1)}^a}}}{{{{(sin1)}^a}+{{(cos1)}^a}}}$,則x,y,z的大小順序為( 。
A.x>z>yB.x>y>zC.z>x>yD.z>y>x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.P為△ABC所在平面外一點,PO⊥面ABC于O.證明:
(1)若PA=PB=PC,則O為△ABC的外心;
(2)若PA⊥BC,PC⊥AB,則PB⊥AC,且O為△ABC的垂心;
(3)若PA,PB,PC兩兩垂直,則O為△ABC的垂心;
(4)若P到△ABC各邊的距離相等(且O在三角形的內(nèi)部),則O為△ABC的內(nèi)心.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知向量$\overrightarrow{a}$=($\sqrt{2}$sinx,$\frac{{\sqrt{2}}}{2}$(cosx+sinx)),$\overrightarrow$=(2cosx,sinx-cosx),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(Ⅰ)求y=f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在給定直角坐標系中,畫出函數(shù)f(x)在區(qū)間[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖1所示,在邊長為12的正方形AA′A′1A1中,點B,C在線段AA′上,且AB=3,BC=4,作BB1∥AA1,分別交A1A1′、AA1′于點B1、P,作CC1∥AA1,分別交A1A1′、AA1′于點C1、Q,將該正方形沿BB1、CC1折疊,使得$A'{A_1}^′$與AA1重合,構(gòu)成如圖2所示的三棱柱ABC-A1B1C1

(1)在三棱柱ABC-A1B1C1中,求證:AB⊥平面BCC1B1;
(2)求平面APQ將三棱柱ABC-A1B1C1分成上、下兩部分幾何體的體積之比;
(3)試判斷直線AQ是否與平面A1C1P平行,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知數(shù)列{an}滿足a1=1,an+1=2an(n∈N*),則an=2n-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)y=loga(x+c)(a>0且a≠1,a,c為常數(shù))的圖象如圖,則下列結(jié)論正確的是( 。
A.a>0,c>1B.a>1,0<c<1C.0<a<1,0<c<1D.0<a<1,c>1

查看答案和解析>>

同步練習冊答案