已知3≤x≤6,
1
3
x≤y≤2x,則x+y的最大值和最小值分別是( 。
A、4,18B、4,8
C、18,4D、8,4
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,求目標(biāo)函數(shù)z=x+y的最小值.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=x+y得y=-x+z,平移直線y=-x+z,
由圖象可知當(dāng)直線y=-x+z經(jīng)過點(diǎn)A時,
直線y=-x+z的截距最小,此時z最小.
x=3
y=
1
3
x
,解得
x=3
y=1
,即A(3,1),
代入目標(biāo)函數(shù)z=x+y得z=3+1=4.
即目標(biāo)函數(shù)z=x+y的最小值為4.
當(dāng)直線y=-x+z經(jīng)過點(diǎn)C時,
直線y=-x+z的截距最大,此時z最大.
x=6
y=2x
,解得
x=6
y=12
,即C(6,12),
代入目標(biāo)函數(shù)z=x+y得z=6+12=18.
即目標(biāo)函數(shù)z=x+y的最大值為18.
故選:A.
點(diǎn)評:本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)x、y滿足
x-4y+4≥0
2x-3y-2≤0
(x≥0,y≥0),若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為1,則log2
1
a
+
2
b
)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinωx+cosωx(ω>0)的圖象與直線y=-2的兩個相鄰公共點(diǎn)之間的距離等于π,則f(x)的單調(diào)遞減區(qū)間是(  )
A、[kπ+
π
6
,kπ+
3
],k∈z
B、[kπ-
π
3
,kπ+
π
6
],k∈z
C、[2kπ+
π
3
,2kπ+
3
],k∈z
D、[2kπ-
π
12
,2kπ+
12
],k∈z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a+2b=2(a,b>0),則ab的最大值為( 。
A、
1
2
B、2
C、3
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x與y之間的一組數(shù)據(jù)如表所示,則y與x的線性回歸方程y=bx+a必過點(diǎn)( 。
 x1346
y0457
A、(3.5,4)
B、(2,2)
C、(3.5,2)
D、(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是函數(shù)f(x)=x3+ax2+bx+c的大致圖象,則|x1-x2|=( 。
A、
4
3
B、
8
3
C、
2
3
3
D、
2
6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線xcosθ+ysinθ-1=0與圓(x-1)2+(y-sinθ)2=
1
16
相切,且θ為銳角,則該直線的傾斜角是( 。
A、
3
B、
6
C、
π
6
D、
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面直角坐標(biāo)系中,由不等式組
x+y≤0
x-y≤0
x≥-3
圍成的區(qū)域的面積是( 。
A、6B、7C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

畫出下列函數(shù)的圖象:
(1)y=(-1)x,x∈{0,1,2,3};
(2)y=
(x+
1
2
)0
|x|-x

查看答案和解析>>

同步練習(xí)冊答案