14.求證.cosα+cos3α=2cos2αcosα.

分析 根據(jù)題意,由于α=2α-α,3α=α+2α,則左式可以變形為cos(2α-α)+cos(α+2α),利用余弦的和差公式變形可得左式=2cos2αcosα,即可得證明.

解答 解:根據(jù)題意,由于α=2α-α,3α=α+2α,
則左式=cosα+cos3α=cos(2α-α)+cos(α+2α)
=(cosαcos2α+sinαsin2α)+(cosαcos2α-sinαsin2α)
=2cos2αcosα=右式;
即原等式得證.

點評 本題考查余弦的和差公式的運用,解題的關(guān)鍵是角的轉(zhuǎn)化,即α=2α-α,3α=α+2α.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.?x∈(0,+∞),不等式x2-ax+1>0都成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)向量$\overrightarrow{a}$=(1+cosα,sinα),$\overrightarrow$=(1-cosβ,sinβ),$\overrightarrow{c}$=(1,0),其中α∈(0,π),β(π,2π).
(1)求證:|$\overrightarrow{a}$|=2cos$\frac{α}{2}$,|$\overrightarrow$|=2sin$\frac{β}{2}$;
(2)若$\overrightarrow{a}$與$\overrightarrow{c}$的夾角是θ1,$\overrightarrow$與$\overrightarrow{c}$的夾角是θ2,且θ12=$\frac{π}{6}$,求sin$\frac{α-β}{4}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.閱讀如圖所示的序框圖,若輸出的n=5,則輸入的整數(shù)p的最小值為29.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=x2+4x在x=-1處的導(dǎo)數(shù)是( 。
A.-3B.2C.-6D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在極坐標系中,求:圓ρ=4cosθ的圓心到直線θ=$\frac{π}{6}$(ρ∈R)的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點E在線段PC上,PC⊥平面BDE.
(I)證明:BD⊥平面PAC;
(Ⅱ)若PA=1,AD=2,求點B到平面PCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若點P是拋物線x2=4y上一動點,則點P到直線x-2y-3=0和x軸的距離之和的最小值是(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.2D.$\sqrt{5}-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質(zhì)量指標值,由測量表得如下頻數(shù)分布表:
質(zhì)量指標值分組[75,85)[85,95)[95,105)[105,115)[115,125)
頻數(shù)62638228
(Ⅰ)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:
(Ⅱ)估計這種產(chǎn)品質(zhì)量指標值的眾數(shù)、中位數(shù)及平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(Ⅲ)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%”的規(guī)定?

查看答案和解析>>

同步練習(xí)冊答案