8.若點(diǎn)P是拋物線x2=4y上一動(dòng)點(diǎn),則點(diǎn)P到直線x-2y-3=0和x軸的距離之和的最小值是( 。
A.$\sqrt{3}$B.$\sqrt{5}$C.2D.$\sqrt{5}-1$

分析 作圖,化點(diǎn)P到直線l:x-2y-3=0和x軸的距離之和為PF+PA-1,從而求最小值

解答 解:由題意作圖如右圖,

點(diǎn)P到直線l:x-2y-3=0為PA;
點(diǎn)P到x軸的距離為PB-1;
而由拋物線的定義知,
PB=PF;
故點(diǎn)P到直線l:x-2y-3=0和y軸的距離之和為PF+PA-1;
而點(diǎn)F(0,1)到直線l:x-2y-3=0的距離為$\frac{|-2-3|}{\sqrt{5}}$=$\sqrt{5}$;
故點(diǎn)P到直線l:x-2y-3=0和y軸的距離之和的最小值為$\sqrt{5}$-1;
故選:D.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是拋物線的簡(jiǎn)單性質(zhì),熟練掌握拋物線的性質(zhì)是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)直線mx-3y+n=0在x軸,y軸上的截距分別是-3和4,則m=4,n=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.求證.cosα+cos3α=2cos2αcosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列函數(shù)中,值域是(0,+∞)的是( 。
A.y=2x+1(x>1)B.y=x2-x+1C.$y=\frac{1}{x}$D.y=$\frac{1}{{x}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}中,a1=1,an+1=2an+3,數(shù)列{bn}中,b1=1,且點(diǎn)(bn+1,bn)在直線y=x-1上.
(Ⅰ)證明:數(shù)列{an+3}為等比數(shù)列;
(Ⅱ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅲ)若cn=an+3,求數(shù)列{bncn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.{x|x>3}用區(qū)間表示為(3,+∞),{x|-2≤x≤5}用區(qū)間表示為[-2,5],{x|-2≤x<5}用區(qū)間表示為[-2,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知等差數(shù)列{an},Sn表示前n項(xiàng)和,若a3+a9>0,S9<0,則S1,S2…Sn中最小的是S5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.給定如下命題:
①若命題p:?x≥0,x2+x≥0,則?p:?x0<0,x02+x0<0
②若變量x,y線性相關(guān),其回歸方程為$\widehat{y}$+x=2,則x,y正相關(guān)
③在△ABC中,BC=2,AC=3,∠B=$\frac{π}{3}$,則△ABC是銳角三角形
④將長(zhǎng)為8的鐵絲圍成一個(gè)矩形框,則該矩形面積大于3的概率為$\frac{1}{2}$
⑤已知a>b>c>0,且2b>a+c,則$\frac{a-b}>\frac{c}{b-c}$
其中正確命題是③④⑤(只填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在直角坐標(biāo)平面xOy內(nèi),一條光線從點(diǎn)(2,4)射出,經(jīng)直線x+y-1=0反射后,經(jīng)過(guò)點(diǎn)(3,2),則反射光線的方程為x-26y+1=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案