【題目】已知向量=(sin x,cos x),=(cos x,cos x),=(2,1).
(1)若∥,求sin xcos x的值;
(2)若0<x≤,求函數(shù)f(x)=·的值域.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生產(chǎn)企業(yè)研發(fā)了一種新產(chǎn)品,該產(chǎn)品在試銷一個階段后得到銷售單價(單位:元)和銷售量(單位:萬件)之間的一組數(shù)據(jù),如下表所示:
銷售單價/元 | 9 | 9.5 | 10 | 10.5 | 11 |
銷售量/萬件 | 11 | 10 | 8 | 6 | 5 |
(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程;
(2)從反饋的信息來看,消費(fèi)者對該產(chǎn)品的心理價(單位:元/件)在內(nèi),已知該產(chǎn)品的成本是元/件(其中),那么在消費(fèi)者對該產(chǎn)品的心理價的范圍內(nèi),銷售單價定為多少時,企業(yè)才能獲得最大利潤?(注:利潤=銷售收入-成本)
參考數(shù)據(jù):,.
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),k∈R.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)當(dāng)k>0時,若函數(shù)f(x)在區(qū)間(1,2)內(nèi)單調(diào)遞減,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了提高學(xué)生的身體素質(zhì),決定組建學(xué)校足球隊(duì),學(xué)校為了解學(xué)生的身體素質(zhì),對他們的體重進(jìn)行了測量,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖),已知圖中從左到右3個小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12.
(1)求該校報名學(xué)生的總?cè)藬?shù);
(2)從報名的學(xué)生中任選3人,設(shè)X表示體重超過60kg的學(xué)生人數(shù),求X的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(a、b∈R,a、b為常數(shù)),且y=f(x)在x=1處切線方程為y=x﹣1.
(1)求a,b的值;
(2)設(shè)h(x)= , k(x)=2h′(x)x2 , 求證:當(dāng)x>0時,k(x)<+ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,b>0,函數(shù)f(x)=x2+(ab﹣a﹣4b)x+ab是偶函數(shù),則f(x)的圖象與y軸交點(diǎn)縱坐標(biāo)的最小值為( 。
A.16
B.8
C.4
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣1|+|x﹣3|
(Ⅰ)求不等式f(x)>2的解集;
(Ⅱ)若不等式f(x)≤a(x+)的解集非空,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市A,B兩所中學(xué)的學(xué)生組隊(duì)參加辯論賽,A中學(xué)推薦3名男生,2名女生,B中學(xué)推薦了3名男生,4名女生,兩校推薦的學(xué)生一起參加集訓(xùn),由于集訓(xùn)后隊(duì)員的水平相當(dāng),從參加集訓(xùn)的男生中隨機(jī)抽取3人,女生中隨機(jī)抽取3人組成代表隊(duì)
(1)求A中學(xué)至少有1名學(xué)生入選代表隊(duì)的概率.
(2)某場比賽前,從代表隊(duì)的6名隊(duì)員中隨機(jī)抽取4人參賽,設(shè)X表示參賽的男生人數(shù),求X得分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com