【題目】在如圖所示的幾何體中,面為正方形,面為等腰梯形, , , ,

I)求證: 平面

II)求與平面所成角的正弦值.

III)線段上是否存在點,使平面平面?證明你的結(jié)論.

【答案】I見解析;(II(Ⅲ)見解析..

【解析】試題分析:Ⅰ)利用余弦定理和勾股定理的逆定理可得ACBC,又ACFB,利用線面垂直的判定定理即可證明;
Ⅱ)通過建立空間直角坐標系,求平面EAC的法向量,利用所成的角即可得出;
Ⅲ)分別求出兩個平面的法向量, ,若平面EAC⊥平面QBC,只需即可.

試題解析:

(Ⅰ)

證明:不妨設(shè)BC=1,

AB=2BC,∠ABC=60,

在△ABC中,由余弦定理可得AC2=22+122×2×1×cos60=3,

AC2+BC2=AB2,

ACBC.

又∵ACFB,CBBF=B

AC⊥平面FBC.

(Ⅱ)∵AC⊥平面FBC,∴ACFC.

CDFC,∴FC⊥平面ABCD.

CACF,CB兩兩互相垂直,如圖建立的空間直角坐標系Cxyz.

在等腰梯形ABCD中,可得CB=CD.

設(shè)BC=1,所以C(0,0,0),A(,0,0),B(0,1,0),D(,12,0),E(,,1).

=(,,1), =(,0,0), =(0,1,0).

設(shè)平面EAC的法向量為=(x,y,z),則有.

.取z=1,得=(0,2,1).

設(shè)BC與平面EAC所成的角為θ,則.

所以BC與平面EAC所成角的正弦值為.

(Ⅲ)線段ED上不存在點Q,使平面EAC⊥平面QBC.證明如下:

假設(shè)線段ED上存在點Q,設(shè)Q(,12,t)(0t1),所以CQ=(,,t).

設(shè)平面QBC的法向量為=(a,b,c),則有,

所以.取c=1,得=(t,0,1).

要使平面EAC⊥平面QBC,只需=0,

t×0+0×2+1×1=0,此方程無解。

所以線段ED上不存在點Q,使平面EAC⊥平面QBC.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正三棱柱中,底面邊長為2,的中點,三棱柱的體積.

(1)求三棱柱的表面積;

(2)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= (e為自然對數(shù)的底).若函數(shù)g(x)=f(x)﹣kx恰好有兩個零點,則實數(shù)k的取值范圍是(
A.(1,e)
B.(e,10]
C.(1,10]
D.(10,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】海水受日月的引力,在一定的時候發(fā)生漲落的現(xiàn)象叫潮。一般地,早潮叫潮,晚潮叫汐。在通常情況下,船在漲潮時駛進航道,靠近碼頭;卸貨后,在落潮時返回海洋.下面是某港口在某季節(jié)每天時間與水深(單位:米)的關(guān)系表:

時刻

0:00

3:00

6:00

9:00

12:00

15:00

18:00

21:00

24:00

水深

10.0

13.0

9.9

7.0

10.0

13.0

10.1

7.0

10.0

(1)請用一個函數(shù)來近似描述這個港口的水深y與時間t的函數(shù)關(guān)系;

(2)一般情況下,船舶航行時,船底離海底的距離為5米或5米以上認為是安全的(船舶?繒r,船底只要不碰海底即可)。某船吃水深度(船底離地面的距離)為6.5米。

Ⅰ)如果該船是旅游船,1:00進港希望在同一天內(nèi)安全出港,它至多能在港內(nèi)停留多長時間(忽略進出港所需時間)?

Ⅱ)如果該船是貨船,在2:00開始卸貨,吃水深度以每小時0.5米的速度減少,由于臺風等天氣原因該船必須在10:00之前離開該港口,為了使卸下的貨物盡可能多而且能安全駛離該港口,那么該船在什么整點時刻必須停止卸貨(忽略出港所需時間)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)、是兩條不同的直線, , , 是三個不同的平面,給出下列四個命題:

①若, ,則 ②若, , ,則

③若, ,則 ④若, ,則

其中正確命題的序號是( ).

A. ①和② B. ②和③ C. ③和④ D. ①和④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,該幾何體由一平面將一圓柱截去一部分所得,則該幾何體的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的圓心為,直線.

(1)求圓心的軌跡方程;

(2)若,求直線被圓所截得弦長的最大值;

(3)若直線是圓心下方的切線,當上變化時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本小題滿分12分,1小問7分,2小問5分

設(shè)函數(shù)

1處取得極值,確定的值,并求此時曲線在點處的切線方程;

2上為減函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)

1)當時,函數(shù)處的切線互相垂直,求的值;

2)若函數(shù)在定義域內(nèi)不單調(diào),求的取值范圍;

(3)是否存在正實數(shù),使得對任意正實數(shù)恒成立?若存在,求出滿足條件的實數(shù);若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案