已知某單位由50名職工,將全體職工隨機(jī)按1-50編號(hào),并且按編號(hào)順序平均分成10組,先要從中抽取10名職工,各組內(nèi)抽取的編號(hào)依次增加5進(jìn)行系統(tǒng)抽樣.
(Ⅰ)若第五組抽出的號(hào)碼為22,寫出所有被抽出職工的號(hào)碼;
(Ⅱ)分別統(tǒng)計(jì)這10名職工的體重(單位:公斤),獲得體重?cái)?shù)據(jù)的莖葉圖如圖所示,求該樣本的平均數(shù);
(Ⅲ)在(Ⅱ)的條件下,從體重不輕于73公斤(≥73公斤)的職工中隨機(jī)抽取兩名職工,求被抽到的兩名職工的體重之和等于154公斤的概率.
考點(diǎn):列舉法計(jì)算基本事件數(shù)及事件發(fā)生的概率,莖葉圖
專題:概率與統(tǒng)計(jì)
分析:(Ⅰ)根據(jù)各組內(nèi)抽取的編號(hào)依次增加5進(jìn)行系統(tǒng)抽樣,可得抽出的10名職工的號(hào)碼,
(Ⅱ)計(jì)算10名職工的平均體重,
(Ⅲ)寫出從10名職工中隨機(jī)抽取兩名體重不輕于73公斤的職工的取法,從而可求被抽到的兩名職工的體重之和等于154公斤的概率..
解答: 解:( I)由題意,第5組抽出的號(hào)碼為22.
因?yàn)?+5×(5-1)=22,所以第1組抽出的號(hào)碼應(yīng)該為2,抽出的10名職工的號(hào)碼依次分別為:2,7,12,17,22,27,32,37,42,47.
( II)這10名職工的平均體重為:
.
x
=
1
10
×(81+70+73+76+78+79+62+65+67+59)=71,
( III)從這10名職工中隨機(jī)抽取兩名體重不輕于73公斤的職工,共有10種不同的取法:(73,76),(73,78),(73,79),(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81),
其中體重之和大于等于154公斤的有7種.故所求概率P=
7
10
點(diǎn)評(píng):本題考查系統(tǒng)抽樣,考查樣本方差,考查列舉法求基本事件,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)S={x||x|<3},T={x|3x-5<1},則S∩T=( 。
A、∅
B、{x|-3<x<3}
C、{x|-3<x<2}
D、{x|2<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx-ax-3(a∈R).
(1)當(dāng) a=-1時(shí),證明:在(1,+∞)上,f(x)+2>0;
(2)求證:
ln2
2
ln3
3
ln4
4
lnn
n
1
n
(n≥2,n∈N+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐A-BCD中,AO⊥平面BCD;O,E分別是BD,BC的中點(diǎn),CA=CB=CD=BD=2,AB=AD=
2

(1)求異面直線AB與CD所成角的余弦值;
(2)求點(diǎn)E到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0.
(1)求證:無(wú)論m為何值,直線l恒過(guò)定點(diǎn)(3,1);
(2)當(dāng)m為何值時(shí),直線被圓截得的弦最短,最短的弦長(zhǎng)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a,b是異面直線,點(diǎn)P∉a∪b,下列命題:
(1)過(guò)P可作平面與a,b均平行;
(2)過(guò)P可作直線與a,b都相交;
(3)過(guò)P可作平面與a,b都垂直;
(4)過(guò)P可作直線a,b都垂直,
其中真命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A是橢圓
x2
a2
+
y2
b2
=1(a>b>0)長(zhǎng)軸上的一個(gè)頂點(diǎn),若橢圓存在點(diǎn)P,使AP⊥OP,求橢圓離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-4x-4的定義域?yàn)閇t-2,t-1],對(duì)任意t∈R,求函數(shù)f(x)的最小值g(t)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f (x)滿足對(duì)任意的x1,x2∈(8,+∞)(x1<x2),有f(x1)>f(x2),且函數(shù)y=f(x+8)為偶函數(shù),則( 。
A、f (6)>f (7)
B、f (6)>f (9)
C、f (7)>f (9)
D、f (7)>f (10)

查看答案和解析>>

同步練習(xí)冊(cè)答案