2.已知拋物線C的頂點是橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的中心,焦點與該橢圓的右焦點F2重合,若拋物線C與該橢圓在第一象限的交點為P,橢圓的左焦點為F1,則|PF1|=( 。
A.$\frac{2}{3}$B.$\frac{7}{3}$C.$\frac{5}{3}$D.2

分析 由橢圓的方程可得a2和b2,進而可得c值,可得拋物線C的焦點,可得p值,進而可得拋物線C的方程,聯(lián)立橢圓與拋物線的方程可得P的坐標,由拋物線的焦半徑公式求得|PF2|,再由橢圓定義求得|PF1|.

解答 解:由橢圓的方程可得a2=4,b2=3,∴c=$\sqrt{{a}^{2}-^{2}}$=1,
故橢圓的右焦點F2為(1,0),即拋物線C的焦點為(1,0),
故可得$\frac{p}{2}$=1,解得p=2,故2p=4,
∴拋物線C的方程為:y2=4x,
聯(lián)立$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{{y}^{2}=4x}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{2}{3}}\\{y=\frac{2\sqrt{6}}{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{2}{3}}\\{y=-\frac{2\sqrt{6}}{3}}\end{array}\right.$,
∵P為第一象限的點,∴P($\frac{2}{3},\frac{2\sqrt{6}}{3}$),
∴$|P{F}_{2}|=1+\frac{2}{3}=\frac{5}{3}$,
則$|P{F}_{1}|=2a-|P{F}_{2}|=4-\frac{5}{3}=\frac{7}{3}$.
故選:B.

點評 本題考查拋物線的標準方程以及橢圓的標準方程,涉及兩點間的距離公式,屬中檔題

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

12.記集合A={(x,y)|x2+y2≤16},集合B={(x,y)|x+y-4≤0,(x,y)∈A}表示的平面區(qū)域分別為Ω1,Ω2.若在區(qū)域Ω1內(nèi)任取一點P(x,y),則點P落在區(qū)域Ω2中的概率為$\frac{3π+2}{4π}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設向量$\overrightarrow{a}$、$\overrightarrow$均為單位向量且夾角為120°,則($\overrightarrow{a}$+2$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)等于(  )
A.$\frac{1}{2}$B.0C.-$\frac{1}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=x3-3x2+2.
(1)寫出函數(shù)的單調(diào)區(qū)間;
(2)討論函數(shù)的極大值或極小值,如有,試寫出極值;
(3)畫出它的大致圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若A,B兩事件互斥,且P(A)=0.3,P(B)=0.6,則P(A+B)=0.9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.計算:${(0.027)^{-\frac{1}{3}}}-{log_3}2•{log_8}3$=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.以下五個說法:
①函數(shù)y=x2在R上是增函數(shù).   
②函數(shù)$y=\frac{1}{x}$的單調(diào)遞減區(qū)間是(-∞,0)∪(0,+∞).
③實數(shù)集可以表示為{R}.  
④方程$\sqrt{2x-1}+|{2y+1}|=0$的解集是$\{(\frac{1}{2},-\frac{1}{2})\}$.
⑤集合M={y|y=x2+1,x∈R}與集合N={(x,y)|y=x2+1,x∈R}表示同一個集合.
其中正確的命題序號是④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知集合A={x|-1≤x≤1},B={x|x2-1>0},則下列結(jié)論中正確的是( 。
A.A?BB.A∪B=AC.A∩B=BD.RB=A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在數(shù)列{an},若a${\;}_{n}^{2}$-a${\;}_{n-1}^{2}$=k(n≥2,n∈N*,k為常數(shù)),則稱{an}為等方差數(shù)列.
(1)若數(shù)列{bn}是等方差數(shù)列,b1=1,b2=3,寫出所有滿足條件的數(shù)列{bn}的前4項;
(2)若等方差數(shù)列{an}滿足a1=2,a2=2$\sqrt{2}$,an>0,設數(shù)列{$\frac{1}{{a}_{n}}$}的前n項和為Tn,是否存在正整數(shù)p,q,使不等式Tn>$\sqrt{pn+q}$-1對一切n∈N*都成立?若存在,求出p,q的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案