分析 (1)利用特殊值法令x2=1,可得f(x1)=f(x1)-f(1),求出f(1)=0;
(2)利用定義法設(shè)x1>x2,判斷f(x1)-f(x2 )的正負(fù)即可;
(3)通過f($\frac{4}{2}$)=f(4)-f(2),求出2=f(4),不等式可整理為0<x2+3x<4,解不等式可得.
解答 解:(1)令x2=1,
∴f(x1)=f(x1)-f(1),
∴f(1)=0;
(2)設(shè)x1>x2
∴f(x1)-f(x2 )=f($\frac{{x}_{1}}{{x}_{2}}$)
∵x1>x2∴$\frac{{x}_{1}}{{x}_{2}}$>1
∵當(dāng)x>1時(shí),f(x)>0
∴f(x1)-f(x2 )>0
∴f(x)在區(qū)間(0,+∞)是增函數(shù);
(3)f($\frac{4}{2}$)=f(4)-f(2),
∴f(4)=2f(2)=2,
∵f(x2+3x)<2=f(4),
∴0<x2+3x<4,
∴-4<x<-3或0<x<1.
故解集為(-4,-3)∪(0,1).
點(diǎn)評(píng) 考查利用特殊值法解決抽象函數(shù)問題,利用定義法證明函數(shù)單調(diào)性和利用單調(diào)性解不等式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 44 | B. | 55 | C. | 143 | D. | 176 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(\frac{2}{3},+∞)$ | B. | (1,+∞) | C. | $[{\frac{2}{3},1}]$ | D. | $(\frac{2}{3},\left.1]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -$\sqrt{3}$ | C. | -2$\sqrt{3}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com