函數(shù)在y=
4x
x2+1
定義域內(nèi)(  )
A、有最大值2,無最小值
B、無最大值,有最小值-2
C、有最大值2,最小值-2
D、無最值
考點(diǎn):函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用均值定理求解.
解答: 解:∵函數(shù)在y=
4x
x2+1
,∴定義域是R,
∴當(dāng)x=0時(shí),y=0.
當(dāng)x>0時(shí),0<y=
4x
x2+1
=
4
x+
1
x
4
2
=2
,
∴當(dāng)x<0時(shí),0>y=
4x
x2+1
=
4
x+
1
x
4
-2
=-2

∴函數(shù)在y=
4x
x2+1
定義域內(nèi)有最大值2,最小值-2.
故選:C.
點(diǎn)評(píng):本題考查函數(shù)的值域的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意均值定理的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某校為了解高三男生的身體狀況,檢測(cè)了全部480名高三男生的體重(單位:kg),所得數(shù)據(jù)都在區(qū)間[50,75]中,其頻率分布直方圖如圖所示.若圖中從左到右的前3個(gè)小組的頻率之比為1:2:3,則體重小于60kg的高三男生人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖為某學(xué)生10次數(shù)學(xué)考試成績(jī)的莖葉圖,則該學(xué)生10次考試的平均成績(jī)?yōu)?div id="h909lgf" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有甲、乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī),得到如下所示的列聯(lián)表:
優(yōu)秀 非優(yōu)秀 總計(jì)
甲班 10 b
乙班 c 30
總計(jì) 105
已知在全部105人中隨機(jī)抽取1人,成績(jī)優(yōu)秀的概率為
2
7
,則下列說法正確的是( 。
A、列聯(lián)表中c的值為30,b的值為35
B、列聯(lián)表中c的值為15,b的值為50
C、根據(jù)列聯(lián)表中的數(shù)據(jù),若按95%的可靠性要求,能認(rèn)為“成績(jī)與班級(jí)有關(guān)系”
D、根據(jù)列聯(lián)表中的數(shù)據(jù),若按95%的可靠性要求,不能認(rèn)為“成績(jī)與班級(jí)有關(guān)系”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)是定義在區(qū)間[-c,c]上的奇函數(shù),其圖象如圖所示:令g(x)=af(x)+b,則下列關(guān)于函數(shù)g(x)的敘述正確的是( 。
A、若a<0,則函數(shù)g(x)的圖象關(guān)于原點(diǎn)對(duì)稱.
B、若a=1,0<b<2,則方程g(x=0)有大于2的實(shí)根.
C、若a=-2,b=0,則函數(shù)g(x)的圖象關(guān)于y軸對(duì)稱
D、若 a≠0,b=2,則方程g(x)=0有三個(gè)實(shí)根

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2sinx的導(dǎo)數(shù)為( 。
A、y′=x2cosx-2xsinx
B、y′=2xsinx+x2cosx
C、y′=2xsinx-x2cosx
D、y′=xcosx-x2sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(x-4)ex的單調(diào)遞減區(qū)間是( 。
A、(-∞,3)
B、(3,+∞)
C、(1,3)
D、(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)F(c,0)(c>0)是雙曲線
x2
a2
-
y2
b2
=1的右焦點(diǎn),F(xiàn)關(guān)于直線y=
3
3
x的對(duì)稱點(diǎn)A恰在該雙曲線的右支上,則該雙曲線的離心率是( 。
A、
3
+1
B、
3
+1
2
C、
5
+1
D、
1+
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若曲線f(x)=alnx+bx3+csinx+d;(a,b,c,d均為常數(shù))在x=2014處的切線方程為y+x-2014=0,則f(2014)+f′(2014)=( 。
A、2013B、2012
C、-1D、0

查看答案和解析>>

同步練習(xí)冊(cè)答案