9.已知命題$p:?x∈[{1,2}],\frac{1}{2}{x^2}-lnx-a≥0$是真命題,則實數(shù)a的取值范圍是( 。
A.$[{\frac{1}{2},+∞})$B.$({-∞,\frac{1}{2}}]$C.[2-ln2,+∞)D.(-∞,2-ln2]

分析 命題$p:?x∈[{1,2}],\frac{1}{2}{x^2}-lnx-a≥0$是真命題,可得a≤$\frac{1}{2}{x}^{2}$-lnx,求出右邊的最小值,即可得出實數(shù)a的取值范圍.

解答 解:∵命題$p:?x∈[{1,2}],\frac{1}{2}{x^2}-lnx-a≥0$是真命題,
∴a≤$\frac{1}{2}{x}^{2}$-lnx,
令y=$\frac{1}{2}{x}^{2}$-lnx,則y′=x-$\frac{1}{x}$,
∵x∈[1,2],∴y′>0,∴函數(shù)單調(diào)遞增,
∴ymin=$\frac{1}{2}$,
∴a≤$\frac{1}{2}$,
故選:B.

點評 本題考查全稱命題,考查函數(shù)的單調(diào)性,正確分離參數(shù)是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(Ⅰ)已知sinθ,cosθ是方程4x2-4mx+2m-1=0的兩個根,$\frac{3π}{2}$<θ<2π,求角θ.
(Ⅱ)已知一扇形的中心角為α,所在圓的半徑為R,若α=60°,R=10cm,求扇形的弧與弦所圍成的弓形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知集合A={x|x2-2x-3<0,x∈R},B={x|ax2-x+3<0,x∈R};
(1)當(dāng)a=2時,求A∩B;
(2)若A∩B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:已知在全部50人中隨機(jī)抽取1人,抽到喜愛打籃球的學(xué)生的概率為$\frac{3}{5}$.
(1)請將列聯(lián)表補充完整(不用寫計算過程);
 喜愛不喜愛合計
男生 5 
女生10  
合計  50
并求出:有多大把握認(rèn)為喜愛打籃球與性別有關(guān),說明你的理由;
(2)若從該班不喜愛打籃球的男生中隨機(jī)抽取3人調(diào)查,求其中某男生甲被選到的概率.
下面的臨界值表供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)y=3|x+1|的單調(diào)遞減區(qū)間是(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的前n項和為Sn,a1=2,Sn=$\frac{n+2}{3}{a}_{n}$(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列滿足${b_n}={({-1})^n}•\frac{2n+1}{a_n}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=$\frac{\sqrt{x}-1}{lgx-\frac{1}{2}}$的定義域是( 。
A.(0,$\sqrt{10})∪(\sqrt{10},+∞)$∪($\sqrt{10}$,+∞)B.($\frac{3}{2},+∞$)
C.$[1,\frac{3}{2})∪(\frac{3}{2},+∞)$D.$(1,\sqrt{10})∪(\sqrt{10},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.過點P(1,0),且圓心為直線x+y-1=0與直線x-y+1=0交點,則該圓標(biāo)準(zhǔn)方程為x2+(y-1)2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=ax2+bx+c,若f(1)=0,且a>b>c,求證:方程f(x)=0必有兩個不等實數(shù)根.

查看答案和解析>>

同步練習(xí)冊答案