數(shù)列中,且滿足 (  )
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求;

(Ⅰ);(Ⅱ) 

解析試題分析:(Ⅰ)首先把地推關(guān)系變形為,從而證明數(shù)列為等差數(shù)列,再求出公差,利用等差數(shù)列的通項(xiàng)公式可求得結(jié)果.
(Ⅱ)因?yàn)楸绢}需要去掉絕對(duì)值符號(hào),所以要知道的符號(hào),從而找到引起分類討論的原因,分兩種情況,分別去掉絕對(duì)值符號(hào),利用等差數(shù)列的前和公式求出結(jié)果.
試題解析:(Ⅰ)由題意,,為等差數(shù)列,設(shè)公差為
由題意得,
(Ⅱ)若,

時(shí),

 
考點(diǎn):1.等差數(shù)列的證明;2.等差數(shù)列的前項(xiàng)和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在等差數(shù)列{an}中,為其前n項(xiàng)和,且
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)是公比大于1的等比數(shù)列,為其前項(xiàng)和已知,且,,構(gòu)成等差數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)為實(shí)數(shù),首項(xiàng)為,公差為的等差數(shù)列的前項(xiàng)和為,滿足.
(1)求通項(xiàng);
(2)設(shè)是首項(xiàng)為,公比為的等比數(shù)列,求數(shù)列的通項(xiàng)公式及其前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列前n項(xiàng)和為成等差數(shù)列.
(I)求數(shù)列的通項(xiàng)公式;
(II)數(shù)列滿足,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,對(duì)任意滿足,且
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列滿足,,數(shù)列滿足.
(1)證明數(shù)列是等差數(shù)列并求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè),,Q=;若將,lgQ,lgP適當(dāng)排序后可構(gòu)成公差為1的等差數(shù)列的前三項(xiàng).
(1)試比較M、P、Q的大小;
(2)求的值及的通項(xiàng);
(3)記函數(shù)的圖象在軸上截得的線段長(zhǎng)為,
設(shè),求,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列的公差大于0,且是方程的兩根,數(shù)列的前項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案