在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.若點(diǎn)P為直線ρcosθ-ρsinθ-4=0上一點(diǎn),點(diǎn)Q為曲線
x=t
y=
1
4
t2
(t
為參數(shù))上一點(diǎn),則|PQ|的最小值為
 
考點(diǎn):參數(shù)方程化成普通方程
專題:坐標(biāo)系和參數(shù)方程
分析:把直線ρcosθ-ρsinθ-4=0化為直角坐標(biāo)方程x-y-4=0.利用點(diǎn)到直線的距離公式可得:|PQ|=
|t-
1
4
t2-4|
2
.再利用二次函數(shù)的單調(diào)性即可得出最小值.
解答: 解:由直線ρcosθ-ρsinθ-4=0化為x-y-4=0.
由點(diǎn)到直線的距離公式可得:|PQ|=
|t-
1
4
t2-4|
2
=
2
|t2-4t+16|
8
=
2
[(t-2)2+12]
8
2
8
×12
=
3
2
2

當(dāng)且僅當(dāng)t=2時(shí)取等號(hào).
∴|PQ|的最小值為
3
2
2

故答案為:
3
2
2
點(diǎn)評(píng):本題考查了把直線的極坐標(biāo)方程化為直角坐標(biāo)方程、點(diǎn)到直線的距離公式、二次函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若sin(
3
4
π+α
)=
5
13
,cos(
π
4
)=
3
5
,且0<α<
π
4
<β<
4
,求cos(α+β)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

站在河邊看對(duì)岸的目標(biāo)A與B,但不能到達(dá).在岸邊選取相距1千米的C、D兩個(gè)觀測(cè)點(diǎn),同時(shí)測(cè)得∠ACB=∠ADC=∠ADB=45°,∠BCD=60°(A、B、C、D在同一平面上),則目標(biāo)A與B之間的距離為
 
千米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

{1,2}⊆A⊆{1,2,3,4,5,6},且4∉A,這樣的A有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a+b+c=1,a,b,c∈R+,
4a+1
+
4b+1
+
4c+1
≤m
,則m最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=f(x)(x≠0)是奇函數(shù),且當(dāng)x∈R+時(shí)是增函數(shù),若f(1)=0,則不等式f[x(x-
1
2
)]
<0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=|x2-1|,若a<b<0,f(a)=f(b),則a2-
1
b2
的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,AD⊥AB,
BC
=2
BD
,|
AD
|=1,則
AC
AD
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的不等式|x-4|+|x-6|≥a恒成立,則a的范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案