設(shè)點(diǎn)P在直線x+3y=0上,且P到原點(diǎn)的距離與P到直線x+3y-2=0的距離相等,則點(diǎn)P坐標(biāo)是
 
考點(diǎn):點(diǎn)到直線的距離公式
專題:直線與圓
分析:由點(diǎn)在線可設(shè)P(-3a,a),由距離公式可得a的方程,解方程可得答案.
解答: 解:∵點(diǎn)P在直線x+3y=0上,∴設(shè)P(-3a,a),
由距離公式可得
(-3a)2+a2
=
|-3a+3a-2|
1+32

解得a=±
1
5
,∴P(-
3
5
,
1
5
)或P(
3
5
,-
1
5

故答案為:(-
3
5
,
1
5
)或(
3
5
,-
1
5
點(diǎn)評:本題考查點(diǎn)到直線的距離公式以及兩點(diǎn)間的距離公式,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=(
1
ax-1
+
1
2
)•x3(a>0且a≠1).
(1)求函數(shù)f(x)的定義域;
(2)討論f(x)的奇偶性;
(3)若f(x)>0在定義域上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一束光線從點(diǎn)A(-1,1)出發(fā),經(jīng)過直線l:x-y-1=0反射后與圓C:x2+y2-6x-8y+24=0相切,求反射線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則取它的項(xiàng):第一次取1,第二次取2個連續(xù)偶數(shù)2、4;第三次取3個連續(xù)奇數(shù)5、7、9;第四次取4個連續(xù)偶數(shù)10、12、14、16;第五次取5個連續(xù)奇數(shù)17、19、21、23、25.按此規(guī)則一直取下去,得到一個子數(shù)列1,2,4,5,7,9,10,12,14,16,17,….則在這個子數(shù)列中,由1開始的第29個數(shù)是
 
,第2014個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等邊△ABC的邊長為2,取各邊的三等分點(diǎn)并連線,可以將△ABC分成如圖所示的9個全等的小正三角形,記這9個小正三角形的重心分別為G1,G2,G3,…,G9,則|(
AG1
+
BG1
)+(
AG2
+
BG2
)+…(
AG9
+
BG9
)|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一只艘船以均勻的速度由A點(diǎn)向正北方向航行,如圖,開始航行時,從A點(diǎn)觀測燈塔C的方位角(從正北方向順時針轉(zhuǎn)到目標(biāo)方向的水平角)為45°,行駛60海里后,船在B點(diǎn)觀測燈塔C的方位角為75°,則A到C的距離是
 
海里.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,Ω是一個平面點(diǎn)集,如果存在非零平面向量
a
,對于任意P∈Ω,均有Q∈Ω,使得
OQ
=
OP
+
a
,則稱
a
為平面點(diǎn)集Ω的一個向量周期.現(xiàn)有以下四個命題:
①若平面點(diǎn)集Ω存在向量周期
a
,則k
a
(k∈Z,k≠0)也是Ω的向量周期;
②若平面點(diǎn)集Ω形成的平面圖形的面積是一個非零常數(shù),則Ω不存在向量周期;
③若平面點(diǎn)集Ω={(x,y)|x>0,y>0},則
b
=(1,2)為Ω的一個向量周期;
④若平面點(diǎn)集Ω={(x,y)|[y]-[x]=0}([m]表示不大于m的最大整數(shù)),則
c
=(1,1)為Ω的一個向量周期.
其中真命題是
 
(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對任意兩個集合M、N,定義:M-N={x|x∈M且x∉N},M△N=(M-N)∪(N-M),M={y|y=x2,x∈R},N={x|-5≤1-2x≤7},則M△N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
sin(ωx+
π
4
)+b(ω>0)的最小正周期為π,最大值為2
2
,求實(shí)數(shù)ω、b的值,并寫出相應(yīng)f(x)的函數(shù)解析式.

查看答案和解析>>

同步練習(xí)冊答案