【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為φ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系.

1)求C1的極坐標(biāo)方程;

2)若C1與曲線C2ρ2sinθ交于AB兩點(diǎn),求|OA||OB|的值.

【答案】1ρ22ρcosθ40;(2

【解析】

1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換.

2)利用兩曲線間的位置關(guān)系的應(yīng)用求出交點(diǎn)的坐標(biāo),進(jìn)一步利用兩點(diǎn)間的距離公式的應(yīng)用求出結(jié)果.

1)曲線C1的參數(shù)方程為φ為參數(shù)),

所以C1的普通方程為,即,

化為極坐標(biāo)方程為ρ22ρcosθ40

2)由于若C1與曲線C2ρ2sinθ交于A,B兩點(diǎn),

曲線C2ρ2sinθ轉(zhuǎn)換為直角坐標(biāo)方程為x2+y22y,

所以,解得

,所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下四個(gè)命題:

①設(shè)是空間中的三條直線,若,,則.

②在面積為的邊上任取一點(diǎn),則的面積大于的概率為.

③已知一個(gè)回歸直線方程為,則.

④數(shù)列為等差數(shù)列的充要條件是其通項(xiàng)公式為的一次函數(shù).

其中正確命題的充號(hào)為________.(把所有正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品自生產(chǎn)并投入市場以來,生產(chǎn)企業(yè)為確保產(chǎn)品質(zhì)量,決定邀請(qǐng)第三方檢測(cè)機(jī)構(gòu)對(duì)產(chǎn)品進(jìn)行質(zhì)量檢測(cè),并依據(jù)質(zhì)量指標(biāo)Z來衡量產(chǎn)品的質(zhì)量.當(dāng)時(shí),產(chǎn)品為優(yōu)等品;當(dāng)時(shí),產(chǎn)品為一等品;當(dāng)時(shí),產(chǎn)品為二等品.第三方檢測(cè)機(jī)構(gòu)在該產(chǎn)品中隨機(jī)抽取500件,繪制了這500件產(chǎn)品的質(zhì)量指標(biāo)的條形圖.用隨機(jī)抽取的500件產(chǎn)品作為樣本,估計(jì)該企業(yè)生產(chǎn)該產(chǎn)品的質(zhì)量情況,并用頻率估計(jì)概率.

1)從該企業(yè)生產(chǎn)的所有產(chǎn)品中隨機(jī)抽取4件,求至少有1件優(yōu)等品的概率;

2)現(xiàn)某人決定購買80件該產(chǎn)品.已知每件成本1000元,購買前,邀請(qǐng)第三方檢測(cè)機(jī)構(gòu)對(duì)要購買的80件產(chǎn)品進(jìn)行抽樣檢測(cè),買家、企業(yè)及第三方檢測(cè)機(jī)構(gòu)就檢測(cè)方案達(dá)成以下協(xié)議:從80件產(chǎn)品中隨機(jī)抽出4件產(chǎn)品進(jìn)行檢測(cè),若檢測(cè)出3件或4件為優(yōu)等品,則按每件1600元購買,否則按每件1500元購買,每件產(chǎn)品的檢測(cè)費(fèi)用250元由企業(yè)承擔(dān).記企業(yè)的收益為X元,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中,滿足前n項(xiàng)和.

(I)證明: ;

(Ⅱ)證明:

(Ⅲ)證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為θ為參數(shù)),直線l的參數(shù)方程為m為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立坐標(biāo)系.

1)求曲線C的極坐標(biāo)方程;

2)直線l與曲線C相交于M,N兩點(diǎn),若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)首項(xiàng)為a1的正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,q為非零常數(shù),已知對(duì)任意正整數(shù)n,mSn+mSm+qmSn總成立.

1)求證:數(shù)列{an}是等比數(shù)列;

2)若不等的正整數(shù)mk,h成等差數(shù)列,試比較ammahhak2k的大;

3)若不等的正整數(shù)m,kh成等比數(shù)列,試比較的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖①:在平行四邊形中,,,將沿對(duì)角線折起,使,連結(jié),得到如圖②所示三棱錐.

1)證明:平面

2)若,二面角的平面角的正切值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=

(e為自然對(duì)數(shù)的底數(shù)),則f(e)=________,函數(shù)yf(f(x))-1的零點(diǎn)個(gè)數(shù)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】黨的十九大明確把精準(zhǔn)脫貧作為決勝全面建成小康社會(huì)必須打好的三大攻堅(jiān)戰(zhàn)之一,為堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位考察了甲乙兩種不同的農(nóng)產(chǎn)品加工生產(chǎn)方式,現(xiàn)對(duì)兩種生產(chǎn)方式加工的產(chǎn)品質(zhì)量進(jìn)行測(cè)試并打分對(duì)比,得到如下數(shù)據(jù):

生產(chǎn)方式甲

分值區(qū)間

頻數(shù)

20

30

100

40

10

生產(chǎn)方式乙

分值區(qū)間

頻數(shù)

25

35

60

50

30

其中產(chǎn)品質(zhì)量按測(cè)試指標(biāo)可劃分為:指標(biāo)在區(qū)間上的為特優(yōu)品,指標(biāo)在區(qū)間上的為一等品,指標(biāo)在區(qū)間上的為二等品.

1)用事件表示“按照生產(chǎn)方式甲生產(chǎn)的產(chǎn)品為特優(yōu)品”,估計(jì)的概率;

2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷能否有的把握認(rèn)為“特優(yōu)品”與生產(chǎn)方式有關(guān)?

特優(yōu)品

非特優(yōu)品

生產(chǎn)方式甲

生產(chǎn)方式乙

3)根據(jù)打分結(jié)果對(duì)甲乙兩種生產(chǎn)方式進(jìn)行優(yōu)劣比較.

附表:

0.10

0.050

0.010

0.001

2.706

3.841

6.635

10.828

參考公式:,其中

查看答案和解析>>

同步練習(xí)冊(cè)答案