【題目】已知函數(shù)y=f(x)的定義域為[﹣1,5],則函數(shù)y=f(3x﹣5)的定義域為( )
A.
B.[ , ]
C.[﹣8,10]
D.(CRA)∩B
【答案】B
【解析】解:∵函數(shù)y=f(x)的定義域為[﹣1,5],∴由﹣1≤3x﹣5≤5,解得 .
∴函數(shù)y=f(3x﹣5)的定義域為[ , ].
故選:B.
【考點精析】解答此題的關鍵在于理解函數(shù)的定義域及其求法的相關知識,掌握求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,過橢圓: 的左右焦點分別作直線, 交橢圓于與,且.
(1)求證:當直線的斜率與直線的斜率都存在時, 為定值;
(2)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量=(2cos, sin),=(cos,2cos),(ω>0),設函數(shù)f(x)=,且f(x)的最小正周期為π.
(1)求函數(shù)f(x)的表達式;
(2)求f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x/攝氏度 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y/顆 | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗。
(Ⅰ)求選取的2組數(shù)據(jù)恰好是不相鄰2天的數(shù)據(jù)的概率;
(Ⅱ)若選取的是12月1日與12月5日的2組數(shù)據(jù),請根據(jù)12月2日至4日的數(shù)據(jù),求出y關于x的線性回歸方程,并判斷該線性回歸方程是否可靠(若由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的
附:回歸方程 中斜率和截距的最小二乘估計公式分別為:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=loga(1﹣x)+loga(x+3),其中0<a<1.
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的最小值為﹣4,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某商品的進貨單價為1元/件,商戶甲往年以單價2元/件銷售該商品時,年銷量為1萬件.今年擬下調(diào)銷售單價以提高銷量增加收益.據(jù)估算,若今年的實際銷售單價為元/件(),則新增的年銷量(萬件).
(1)寫出今年商戶甲的收益(單位:萬元)與的函數(shù)關系式;
(2)商戶甲今年采取降低單價提高銷量的營銷策略,是否能獲得比往年更大的收益(即比往年收益更多)?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在多面體中,四邊形與四邊形均為邊長為2的正方形,為等腰直角三角形,,且平面平面,平面平面.
(1)求證:平面平面;
(2)求多面體的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com