已知曲線C1的參數(shù)方程
x=2cosφ
y=3sinφ
(φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立坐標(biāo)系曲線,C2的極坐標(biāo)方程為ρ=2,正方形ABCD的頂點(diǎn)都在C2上,且A,B,C,D依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為(2,
π
3
).設(shè)P為C1上任意一點(diǎn),則|PA|2+|PB|2+|PC|2+|PD|2的取值范圍是( 。
A、[12,52]
B、[32,52]
C、[12,32]
D、[20,32]
考點(diǎn):參數(shù)方程化成普通方程,兩點(diǎn)間的距離公式
專題:選作題,坐標(biāo)系和參數(shù)方程
分析:確定點(diǎn)A,B,C,D的直角坐標(biāo),利用參數(shù)方程設(shè)出P的坐標(biāo),借助于三角函數(shù),即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范圍.
解答: 解:點(diǎn)A,B,C,D的直角坐標(biāo)為(1,
3
),(-
3
,1),(-1,-
3
),(
3
,-1),
設(shè)P(x0,y0),則
x0=2cosφ
y0=3sinφ   
(φ為參數(shù))
t=|PA|2+|PB|2+|PC|2+|PD|2=4x02+4y02+16=32+20sin2φ
∵sin2φ∈[0,1]
∴t∈[32,52].
故選:B.
點(diǎn)評(píng):本題考查極坐標(biāo)與直角坐標(biāo)的互化,考查圓的參數(shù)方程的運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

M(3,0)在圓x2+y2-8x-2y+8=0內(nèi),過M點(diǎn)最長(zhǎng)的弦所在的直線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC,
AB
+
AC
=λ(
AB
|
AB
|
+
AC
|
AC
|
),則該三角形的形狀為( 。
A、等腰三角形
B、等邊三角形
C、直角三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos15°的值是( 。
A、
6
-
2
4
B、
2
-
6
4
C、
6
+
2
4
D、
3
+
2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角θ的終邊上有一點(diǎn)P(-4,3),則cosθ的值是( 。
A、
3
5
B、-
4
5
C、
4
3
D、-
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某程序框圖如圖所示,現(xiàn)輸入四個(gè)函數(shù),則可輸出的函數(shù)是(  )
A、f(x)=ex
B、f(x)=x2+2
C、f(x)=2x+2-x
D、f(x)=log2|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓周上按順時(shí)針方向標(biāo)有1,2,3,4,5五個(gè)點(diǎn),一只青蛙按順時(shí)針方向繞圓周從一個(gè)點(diǎn)跳到另一點(diǎn).若它停在奇數(shù)點(diǎn)上,則下一次只能跳一個(gè)點(diǎn);若停在偶數(shù)點(diǎn)上,則下一次跳兩個(gè)點(diǎn).該青蛙從5這個(gè)點(diǎn)跳起,經(jīng)2014次跳后它將停在的點(diǎn)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將自然數(shù)的前5個(gè)數(shù):(1)排成1,2,3,4,5;(2)排成5,4,3,2,1;(3)排成2,1,5,3,4;(4)排成4,1,5,3,2.那么,可以叫做數(shù)列的只有( 。
A、(1)
B、(1),(2)
C、(1),(2),(3)
D、(1),(2),(3),(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直線a在α內(nèi),b在β內(nèi),α⊥β,α∩β=c,∠1=∠2=60°則a、b所成角θ的余弦值為( 。
A、1
B、-
1
4
C、
1
4
D、
2
5

查看答案和解析>>

同步練習(xí)冊(cè)答案