3.如圖,建造一個容積為16m3,深為2m,寬為2m的長方體無蓋水池,如果池底的造價為120元/m2,池壁的造價為80元/m2,求水池的總造價.

分析 求出水池的長,可得底面積與側(cè)面積,利用池底的造價為120元/m2,池壁的造價為80元/m2,即可求水池的總造價.

解答 解:分別設(shè)長、寬、高為am,bm,hm;水池的總造價為y元,則V=abh=16,h=2,b=2,
∴a=4m,
∴S=4×2=8m2
S側(cè)=2×(2+4)×2=24m2,
∴y=120×8+80×24=2880元.

點評 本題考查利用數(shù)學(xué)知識解決實際問題,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知tan(α-$\frac{β}{2}$)=$\frac{1}{2}$,tan(β-$\frac{α}{2}$)=-$\frac{1}{3}$,則tan$\frac{α+β}{2}$=$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知Rt△ABC,∠C=90°,設(shè)AC=m,BC=n
(1)若D為斜邊AB的中點,求證:CD=$\frac{1}{2}$AB;
(2)若E為CD的中點,連接AE并延長交BC于F,求AF的長度(用m,n表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=cos2x-sin2x+2$\sqrt{3}$sinxcosx+1.
(1)求f(x)的最小正周期,并求f(x)的最小值及此時x的取值集合;
(2)若f(α)=2,且α∈[$\frac{\sqrt{3}}{4}$,$\frac{\sqrt{3}}{2}$],求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖右邊是y=logax(a>0,且a≠1)的圖象,則下列函數(shù)圖象正確的是(  )
A.
y=a|x|
B.
y=1+a|x|
C.
y=logax
D.
y=loga(1-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=2cos2$\frac{ωx}{2}$+cos(ωx+$\frac{π}{3}$),(其中ω>0)的最小正周期為π,在銳角△ABC中,a,b,c分別是角A,B,C的對邊,若f(A)=-$\frac{1}{2}$,c=3,△ABC的面積為6$\sqrt{3}$,則△ABC的外接圓面積為( 。
A.45πB.49πC.D.$\frac{49π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若已知x>$\frac{5}{4}$,函數(shù)y=4x+$\frac{1}{4x-5}$的最小值為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.點(1,2)到直線x=-2的距離是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知在等差數(shù)列{an}中,a1=-1,公差d=2,an=15,則n的值為( 。
A.7B.8C.9D.10

查看答案和解析>>

同步練習(xí)冊答案