某班的5名同學代表班級參加學校組織的知識競賽,在競賽過程中,每人依次回答問題,為更好的發(fā)揮5人的整體水平,其中A同學只能在第一或最后一個答題,B和C同學則必須相鄰順序答題,則不同的答題順序編排方法的種數(shù)為
 
(用數(shù)字作答)
考點:計數(shù)原理的應用
專題:計算題
分析:根據(jù)題意,分3進行分析:先安排A,再將BC看成一個整體,需要考慮BC的順序,將BC這個整體與其他2人進行全排列,分別計算每一步的情況數(shù)目,由分步計數(shù)原理計算可得答案.
解答: 解:根據(jù)題意,分3進行分析:
①、先安排A,由于其只能在第一或最后一個答題,則A有2種排法,
②、將BC看成一個整體,考慮BC的順序,有2種排法,
③、將BC這個整體與其他2人進行全排列,有A33=6種排法;
則共有2×2×6=24種編排方法;
故答案為:24.
點評:本題考查計數(shù)原理的應用,涉及排列數(shù)的計算,注意先分析特殊的或受到限制的元素.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知三角形PAD所在平面與矩形ABCD所在平面互相垂直,PA=PD=AB=2,∠APD=90°,若點P、A、B、C、D都在同一球面上,則此球的表面積等于( 。
A、4
3
π
B、
3
π
C、12π
D、20π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1的棱長為1,連結AC1交平面A1BD于點H,給出以下結論:
①AC1⊥平面A1BD;  
AH=
3
3
;
③直線AC1與BB1所成的角為60°.
則正確的結論是
 
.(正確的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設m,n是兩條不同的直線,α,β,γ是三個不同的平面,以下四個命題:
①若α⊥β,m⊥α,則m∥β;   
②若α⊥γ,β⊥γ,則α∥β;
③若m⊥α,n∥m,則n⊥α;    
④若m∥α,n∥α,則m∥n.
其中正確命題的序號是
 
.(將正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

兩變量x和y成線性相關關系,對應數(shù)據(jù)如表,若線性回歸方程為:
y
=1.9x+
a
.則
a
=
 
x 2 2.5 3 3.5 4
y 4 4.8 6.2 6.9 8.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足
2x-y-2≥0
x-2y+2≤0
x+y-13≤0
,則z=xy的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知變量x,y滿足約束條件
x+y-5≤0
x-2y+1≤0
x-1≥0
,則z=x+2y-1的最大值( 。
A、9B、8C、7D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“λ<0”是“數(shù)列an=n2-2λn(n∈N*)為遞增數(shù)列”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a1=1,a2=3,an+2=3an+1-kan(k≠0)對任意n∈N*成立,令bn=an+1-an,且{bn}是等比數(shù)列.
(1)求實數(shù)k的值;
(2)求數(shù)列{an}的通項公式;
(3)求和:Sn=b1+2b2+3b3+…nbn

查看答案和解析>>

同步練習冊答案