20.由x,y滿足的約束條件,作出可行域如圖中陰影部分(含邊界)所示,則目標(biāo)函數(shù)z=3x-y的最大值是$\frac{5}{2}$.

分析 化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 解:聯(lián)立$\left\{\begin{array}{l}{x=1}\\{2x+2y-3=0}\end{array}\right.$,解得:A(1,$\frac{1}{2}$).
化目標(biāo)函數(shù)z=3x-y為y=3x-z,
由圖可知,當(dāng)直線y=3x-z過A點(diǎn)時(shí),直線在y軸上的截距最小,z有最大值為:3×$1-\frac{1}{2}=\frac{5}{2}$.
故答案為:$\frac{5}{2}$.

點(diǎn)評(píng) 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的圖象如圖所示,則cosφ=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在一個(gè)底面半徑為1,高為3的圓柱形容器中放滿水,再把容器傾斜倒出$\frac{1}{3}$水,此時(shí)圓柱體的母線與水平面所成角的大小是45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若g(x)=1-2x,f[g(x)]=$\frac{1-x}{1+x}$,則f(4)=( 。
A.-5B.5C.-10D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知a>b,則下面結(jié)論正確的是( 。
A.$\frac{1}{a}<\frac{1}$B.$\frac{a}>1$C.|a|>bD.ac2>bc2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.給出以下四個(gè)命題:
(1)當(dāng)0<α<$\frac{π}{2}$時(shí),sinα<α<tanα;
(2)當(dāng)π<α<$\frac{3π}{2}$時(shí),sinα+cosα<-1;
(3)已知A={x|x=nπ+(-1)n$\frac{π}{2}$,n∈Z}與B={x|x=2kπ+$\frac{π}{2}$,k∈Z},則A=B;
(4)在斜△ABC中,則tanA+tanB+tanC=tanAtanBtanC.
請(qǐng)?jiān)跈M線上填出所有正確命題的序號(hào)(1)(2)(3)(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)是定義在實(shí)數(shù)集R上的可導(dǎo)函數(shù),且其導(dǎo)函數(shù)為f′(x),若f′(x)<f(x)在R上恒成立,則不等式ef(x)>f(1)ex上的解集為(  )
A.(1,+∞)B.(-∞,1)C.(-1,1)D.(-∞,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知$f(x+\frac{1}{x})={x^2}+\frac{1}{x^2}$,則函數(shù)f(x)=(  )
A.x2-2(x≠0)B.x2-2(x≥2)C.x2-2(|x|≥2)D.x2-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)f(x)=$\frac{x+b}{(2x+1)(x-a)}$為奇函數(shù),則a+b=( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案