A. | (1,+∞) | B. | (-∞,1) | C. | (-1,1) | D. | (-∞,1)∪(1,+∞) |
分析 ef(x)>f(1)ex?$\frac{f(x)}{{e}^{x}}$>$\frac{f(1)}{e}$,構(gòu)造g(x)=$\frac{f(x)}{{e}^{x}}$,則g′(x)=$\frac{{e}^{x}f′(x)-{e}^{x}f(x)}{({e}^{x})^{2}}$=$\frac{f′(x)-f(x)}{{e}^{x}}$<0,故由g(x)的單調(diào)性得出答案.
解答 解:∵f′(x)<f(x),∴$\frac{f′(x)-f(x)}{{e}^{x}}$<0,∴$\frac{{e}^{x}f′(x)-{e}^{x}f(x)}{({e}^{x})^{2}}$<0,
令g(x)=$\frac{f(x)}{{e}^{x}}$,則g′(x)=$\frac{{e}^{x}f′(x)-{e}^{x}f(x)}{({e}^{x})^{2}}$<0,
∴g(x)在R上是減函數(shù).
∵ef(x)>f(1)ex,
∴$\frac{f(x)}{{e}^{x}}$>$\frac{f(1)}{e}$,即g(x)>g(1).
∴x<1.
故選:B.
點評 本題考查了函數(shù)單調(diào)性與導(dǎo)數(shù)的關(guān)系,構(gòu)造g(x)=$\frac{f(x)}{{e}^{x}}$是解題關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,4) | B. | (2,e) | C. | (0,1) | D. | (1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -24$\sqrt{3}$ | B. | 24$\sqrt{3}$ | C. | -$\frac{75\sqrt{3}}{2}$ | D. | $\frac{51}{2}\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | $\frac{\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 10 | C. | 15 | D. | 20 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com