(本題滿分14分)
在平面直角坐標系中,設(shè)點(1,0),直線:,點在直線上移動,是線段軸的交點, .
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)記的軌跡的方程為,過點作兩條互相垂直的曲線的弦、,設(shè) 的中點分別為.求證:直線必過定點

(1)
(2)直線恒過定點
解:(Ⅰ)依題意知,直線的方程為:.點是線段的中點,且,∴是線段的垂直平分線.
是點到直線的距離.
∵點在線段的垂直平分線,∴
故動點的軌跡是以為焦點,為準線的拋物線,其方程為:
(Ⅱ)設(shè),直線AB的方程為
 則
(1)—(2)得,即,
代入方程,解得.      
所以點M的坐標為
同理可得:的坐標為
直線的斜率為,方程為
,整理得,
顯然,不論為何值,均滿足方程,
所以直線恒過定點
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本小題滿分12分)
已知點,一動圓過點且與圓內(nèi)切,
(1)求動圓圓心的軌跡的方程;
(2)設(shè)點,點為曲線上任一點,求點到點距離的最大值;
(3)在的條件下,設(shè)△的面積為(是坐標原點,是曲線上橫坐標為的點),以為邊長的正方形的面積為.若正數(shù)滿足,問是否存在最小值,若存在,請求出此最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知,點滿足,記點的軌跡.
(Ⅰ)求軌跡的方程;
(Ⅱ)過點F2(1,0)作直線l與軌跡交于不同的兩點A、B,設(shè),若的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(14分)為了迎接2010年在廣州舉辦的亞運會,我市某體校計劃舉辦一次宣傳活動,屆時將在運動場的一塊空地ABCD(如圖)上擺放花壇,已知運動場的園林處(P點)有一批鮮花,今要把這批鮮花沿道路PA或PB送到空地ABCD中去,且PA="200" m,PB="300" m,∠APB=60°.
 
(1)試求A、B兩點間的距離;
(2)能否在空地ABCD中確定一條界線,使位于界線一側(cè)的點,沿道路PA送花較近;而另一側(cè)的點,沿道路PB送花較近?如果能,請說出這條界線是一條什么曲線,并求出其方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

是⊙上的任意一點,過垂直軸于,動點滿足。
(1)求動點的軌跡方程;
(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點,使的中點,若存在,求出直線的方程,若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)

如圖:平面直角坐標系中為一動點,,.
(1)求動點軌跡的方程;
(2)過上任意一點
兩條切線、,且軸于、
長度的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

定長為3的線段兩端點分別在軸,軸上滑動,在線段上,且
(1)求點的軌跡的方程.
(2)設(shè)過且不垂直于坐標軸的直線交軌跡兩點.問:線段上是否存在一點,使得以為鄰邊的平行四邊形為菱形?作出判斷并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

方程mx+ny2=0與mx2+ny2=1(mn≠0)在同一坐標系中的圖象大致是                  (     )

A                   B                    C                   D

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若圓方程為,圓方程為,則方程表示的軌跡是
A.經(jīng)過兩點的直線B.線段的中垂線
C.兩圓公共弦所在的直線D.一條直線且該直線上的點到兩圓的切線長相等

查看答案和解析>>

同步練習冊答案