已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為e=
3
3
,直線l:y=x+2和圓O:x2+y2=b2相切.
(1)求橢圓C的方程;
(2)過橢圓C的左頂點,作直線m,與O相交于兩點R,S,已知△ORS的面積為
3
2
,求直線m的方程.
考點:直線與圓錐曲線的綜合問題
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)由直線l:y=x+2與圓x2+y2=b2相切得:
2
2
=b
,再利用e=
3
3
,可得
a2-2
a2
=
1
3
,求出a,即可得出橢圓C的方程;
(2)設直線m的方程為:y=k(x+
3
)(k≠0),求出圓心O到直線m的距離、直線m與圓O相交的弦長,表示出△ORS的面積,利用△ORS的面積為
3
2
,即可求直線m的方程.
解答: 解:(1)由直線l:y=x+2與圓x2+y2=b2相切得:
2
2
=b
,解得b=
2
,
又e=
3
3
,可得
a2-2
a2
=
1
3
,得a=
3

故橢圓C的方程為:
x2
3
+
y2
2
=1
…(5分)
(2)由(1)知:A(-
3
,0),依題意知,直線m的斜率存在且不為0,
設直線m的方程為:y=k(x+
3
)(k≠0),
所以圓心O到直線m的距離d=
|
3
k|
k2+1
,
因為直線m與圓O相交,所以d<
2

|
3
k|
k2+1
2
,解得k2<2且k≠0.
直線m與圓O相交的弦長|RS|=2
r2-d2
=
2
2-k2
k2+1
,
所以S△ORS=
1
2
|RS|d=
1
2
2
2-k2
k2+1
|
3
k|
k2+1
=
3
2
,
解得k2=1或k2=
1
5
,均適合k2<2且k≠0,
所以k=±1或k=±
5
5
,
故直線m的方程為y=±(x+
3
)或y=±
5
5
(x+
3
).…(13分)
點評:本題考查了橢圓的標準方程及其性質(zhì)、直線與橢圓相交問題轉(zhuǎn)化為方程聯(lián)立得到根與系數(shù)的關系、弦長公式等基礎知識與基本技能方法,考查了推理能力和計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知a、b∈R,且ab≠0,則下列結(jié)論恒成立的是( 。
A、a+b≥2
ab
B、
a
b
+
b
a
≥2
C、|
a
b
+
b
a
|≥2
D、a2+b2>2ab

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-ax2(a∈R),求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的相鄰兩項an,an+1是x的方程x2-(1+2n)x+bn=0(n∈N*)的兩根且a1=2
(1)求證:數(shù)列{an-n}是等比數(shù)列;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一圓過P(4,-2)、Q(-1,3)兩點,且在y軸上截得的線段長為4
3
,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a
1
2
+a-
1
2
=x
1
2
,x>0,求
x-2+
2-4x 
 
x-2 -
2-4x 
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點E(-
1
2
,0),點F是圓(x-
1
2
2+y2=4上的動點,線段EF的垂直平分線交FM于點P,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

據(jù)IEC(國際電工委員會)調(diào)查顯示,小型風力發(fā)電項目投資較少,且開發(fā)前景廣闊,但受風力自然資源影響,項目投資存在一定風險.根據(jù)測算,風能風區(qū)分類標準如下:
風能分類 一類風區(qū) 二類風區(qū)
平均風速m/s 8.5~10 6.5~8.5
假設投資A項目的資金為x(x≥0)萬元,投資B項目資金為y(y≥0)萬元,調(diào)研結(jié)果是:未來一年內(nèi),位于一類風區(qū)的A項目獲利30%的可能性為0.6,虧損20%的可能性為0.4;位于二類風區(qū)的B項目獲利35%的可能性為0.6,虧損10%的可能性是0.1,不賠不賺的可能性是0.3.
(1)記投資A,B項目的利潤分別為ξ和η,試寫出隨機變量ξ與η的分布列和期望Eξ,Eη;
(2)某公司計劃用不超過100萬元的資金投資于A,B項目,且公司要求對A項目的投資不得低于B項目,根據(jù)(1)的條件和市場調(diào)研,試估計一年后兩個項目的平均利潤之和z=Eξ+Eη的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,已知a2=-7,S6=-24.
(1)求等差數(shù)列{an}的前n項和Sn
(2)當n為何值時,數(shù)列{
Sn+100
n
}有最小項,并求出最小項的值.

查看答案和解析>>

同步練習冊答案