已知A(4,0),B(0,3)和△AOB的內(nèi)切圓(x-1)2+(y-1)2=1,P(x,y)為圓周上一點(diǎn).
(1)求點(diǎn)P到直線l:3x+4y+3=0距離的最大值;
(2)若M=|PA|2+|PB|2,求M的最大值與最小值.
考點(diǎn):直線和圓的方程的應(yīng)用,三角函數(shù)的最值
專題:綜合題,數(shù)形結(jié)合
分析:(1)求出圓的圓心與半徑,利用圓心與直線的距離公式求出距離,即可求出點(diǎn)P到直線l:3x+4y+3=0距離的最大值;
(2)設(shè)出P的坐標(biāo)的參數(shù)形式,利用M=|PA|2+|PB|2,求出表達(dá)式,通過三角函數(shù)的有界性,求M的最大值與最小值.
解答: 解:(1)由已知圓心O'(1,1),r=1,
∴O'到直線l的距離d=
|3×1+4×1+3|
32+42
=2

∴P(x,y)到直線l的距離最大值為d+r=2+1=3.
(2)設(shè)P(x,y),則點(diǎn)P滿足
x=1+cosθ
y=1+sinθ
,
則M=|PA|2+|PB|2=(cosθ-3)2+(1+sinθ)2+(1+cosθ)2+(sinθ-2)2]
=17-(2sinθ+4cosθ)=17-2
5
sin(θ+φ)
,
∴當(dāng)sin(θ+φ)=1時(shí)  Mmin=17-2
5
;
當(dāng)sin(θ+φ)=-1時(shí)   Mmax=17+2
5
點(diǎn)評(píng):本題是中檔題,考查點(diǎn)到直線的距離公式的應(yīng)用,圓與直線的關(guān)系,圓的參數(shù)方程,三角函數(shù)的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lg
1-x
1+x
的圖象關(guān)于點(diǎn)
 
對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

多面體EF-ABCD中,ABCD為正方形,BE⊥平面ABCD,CF⊥平面ABCD,AB=CF=2BE.
(Ⅰ)求證:DE⊥AC;
(Ⅱ)求平面EFD與平面ABCD所成的銳二面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知E,F(xiàn),G,H分別是空間四邊形四條邊AB,BC,CD,DA的中點(diǎn),
(1)求證四邊形EFGH是平行四邊形
(2)若AC⊥BD時(shí),求證:EFGH為矩形;
(3)若AC、BD成30°角,AC=6,BD=4,求四邊形EFGH的面積;
(4)若AB=BC=CD=DA=AC=BD=2,求AC與BD間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程①:ax2+bx+c=0,(其中c≠0)有整數(shù)根,是否存在整數(shù)P,使得方程②:x3+(x+P)x2+(b+P)x+c=0與方程①有相同的整數(shù)根?如果這樣的P存在,請(qǐng)求出所有這樣的整數(shù)P和相應(yīng)的公共整數(shù)根;如果這樣的P不存在,請(qǐng)說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)(3,1)和(4,-6)在直線2x-y+a=0的兩側(cè),則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若變量x、y滿足約束條件
x+y≤3
x-y≥-1
y≥1
,則4x+2y的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin
x
2
cos
x
2
+
1
2
sin(x+
π
2
)

(1)寫出f(x)的最小正周期以及單調(diào)區(qū)間;
(2)若函數(shù)h(x)=cos(x+
4
)
,求函數(shù)y=log2f(x)+log2h(x)的最大值,以及使其取得最大值的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
-x2+x+6
的定義域是A,B={x|(
5
3
)x<1}
,則A∩B=( 。
A、{x|x≤-2}
B、{x|-3≤x<0}
C、{x|0<x≤3}
D、{x|-2≤x<0}

查看答案和解析>>

同步練習(xí)冊(cè)答案