14.如圖,已知三棱錐O-ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點(diǎn).
(1)求異面直線BC與AE所成的角;
(2)求直線BE和平面ABC所成角的正弦值.

分析 (1)以O(shè)為原點(diǎn),OB為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線BC與AE所成的角的大。
(2)求出平面ABC的法向量和$\overrightarrow{BE}$,利用向量法能求出直線BE和平面ABC所成角的正弦值.

解答 解:(1)∵三棱錐O-ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點(diǎn),
∴以O(shè)為原點(diǎn),OB為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,
則B(2,0,0),C(0,2,0),A(0,0,1),E(0,1,0),
$\overrightarrow{BC}$=(-2,2,0),$\overrightarrow{AE}$=(0,1,-1),
設(shè)異面直線BC與AE所成的角為θ,
則cosθ=|$\frac{\overrightarrow{BC}•\overrightarrow{AE}}{|\overrightarrow{BC}|•|\overrightarrow{AE}|}$|=|$\frac{2}{2\sqrt{2}×\sqrt{2}}$|=$\frac{1}{2}$,
∴θ=60°,
∴異面直線BC與AE所成的角為60°.
(2)$\overrightarrow{AB}$=(2,0,-1),$\overrightarrow{AC}$=(0,2,-1),
設(shè)平面ABC的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=2x-z=0}\\{\overrightarrow{n}•\overrightarrow{AC}=2y-z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,1,2),
$\overrightarrow{BE}$=(-2,1,0),
設(shè)直線BE和平面ABC所成角為θ,
則sinθ=|cos<$\overrightarrow{BE},\overrightarrow{n}$>|=|$\frac{\overrightarrow{BE}•\overrightarrow{n}}{|\overrightarrow{BE}|•|\overrightarrow{n}|}$|=|$\frac{-2+1+0}{\sqrt{5}•\sqrt{6}}$|=$\frac{\sqrt{30}}{30}$.
∴直線BE和平面ABC所成角的正弦值為$\frac{\sqrt{30}}{30}$.

點(diǎn)評(píng) 本題考查異面直線所成角的大小的求法,考查直線與平面所成角的正弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.正三棱錐V-ABC的底面邊長(zhǎng)是a,側(cè)面與底面成60°的二面角.求
(1)棱錐的側(cè)棱長(zhǎng);
(2)側(cè)棱與底面所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)$y=\frac{1}{\sqrt{{-x}^{2}+2x+3}}$的單調(diào)減區(qū)間是( 。
A.(1,3)B.(-∞,1)C.(-1,1)D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若直線l的方向向量與平面α的法向量的夾角等于120°,則直線l與平面α所成的角等于(  )
A.120°B.60°C.30°D.60°或30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某山體外圍有兩條相互垂直的直線型公路,為開(kāi)發(fā)山體資源,修建一條連接兩條公路沿山區(qū)邊界的直線型公路.記兩條相互垂直的公路為l1,l2,山區(qū)邊界曲線為C,計(jì)劃修建的公路為L(zhǎng).如圖所示,M,N為C的兩個(gè)端點(diǎn),測(cè)得點(diǎn)M到l1,l2的距離分別為5千米和80千米,點(diǎn)N到l1的距離為100千米,以l1,l2 所在的直線分別為x、y軸建立平面直角坐標(biāo)系xOy,假設(shè)曲線C符合函數(shù)y=$\frac{a}{x}$模型(其中a為常數(shù)).
(1)設(shè)公路L與曲線C相切于P點(diǎn),P的橫坐標(biāo)為t.
①請(qǐng)寫出公路L長(zhǎng)度的函數(shù)解析式f(t),并寫出其定義域;
②當(dāng)t為何值時(shí),公路L的長(zhǎng)度最短?求出最短長(zhǎng)度.
(2)在公路長(zhǎng)度最短的同時(shí)要求美觀,需在公路L與山體之間修建綠化帶(如圖陰影部分),求綠化帶的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.方程x2+3x-1=0的根可視為函數(shù)y=x+3的圖象與函數(shù)y=$\frac{1}{x}$的圖象交點(diǎn)的橫坐標(biāo),則方程x2+3x-1=0的實(shí)根x0所在的范圍是( 。
A.0<x0<$\frac{1}{4}$B.$\frac{1}{4}$<x0<$\frac{1}{3}$C.$\frac{1}{3}$<x0<$\frac{1}{2}$D.$\frac{1}{2}$<x0<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在“①高一數(shù)學(xué)課本中的難題;②所有的正三角形; ③方程x2-4=0的實(shí)數(shù)解”中,能夠表示成集合的是( 。
A.B.C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知f(x)=$\frac{\sqrt{3}}{2}$cos2ωx-sinωxcosωx+$\frac{\sqrt{3}}{2}$(ω>0)的圖象與直線y=m(m>0)相切,并且相鄰兩切點(diǎn)的橫坐標(biāo)相差2π.
(Ⅰ)求ω和m的值;
(Ⅱ)△ABC中,角A,B,C的對(duì)邊分別是a,b,c,若角A滿足f(A)=-$\frac{\sqrt{3}}{2}$,且a=4,b+c=6,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.定義在(0,+∞)上的函數(shù)f(x),對(duì)于任意的m,n∈(0,+∞),都有f(mn)=f(m)+f(n)成立,當(dāng)x>1時(shí),f(x)<0.
(1)求證:1是函數(shù)f(x)的零點(diǎn);
(2)求證:f(x)是(0,+∞)上的減函數(shù);
(3)當(dāng)$f(2)=\frac{1}{2}$時(shí),解不等式f(ax+4)>1.

查看答案和解析>>

同步練習(xí)冊(cè)答案