A. | “充要” | B. | “充分不必要” | ||
C. | “必要不充分” | D. | “既不充分也不必要” |
分析 先求出函數(shù)f(x)的導(dǎo)數(shù),求出“f(x)在區(qū)間(-2,+∞)上單調(diào)遞增”的充要條件,從而得到答案.
解答 解:f′(x)=$\frac{(ax+1)′(x+2)-(ax+1)(x+2)′}{{(x+2)}^{2}}$=$\frac{2a-1}{{(x+2)}^{2}}$,
如f(x)在區(qū)間(-2,+∞)上單調(diào)遞增,
則2a-1>0,解得:a>$\frac{1}{2}$,
由f(2)<f(3),得:$\frac{2a+1}{4}$<$\frac{3a+1}{5}$,解得:a>$\frac{1}{2}$,
故f(2)<f(3)”是“f(x)在區(qū)間(-2,+∞)上單調(diào)遞增”的充要條件,
故選:A.
點(diǎn)評(píng) 本題考查了充分必要條件,考查函數(shù)的單調(diào)性問(wèn)題,是一道基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1-2x=$\frac{9}{10}$ | B. | 1-2x=$\frac{10}{11}$ | C. | (1-x)2=$\frac{9}{10}$ | D. | (1-x)2=$\frac{10}{11}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\frac{3}{2}$ | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -3 | B. | $\frac{1}{2}$ | C. | $\frac{3}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$ | B. | f(x)=2x,g(x)=2(x+1) | ||
C. | f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2 | D. | f(x)=$\frac{{x}^{2}+1}{x+1}$,g(x)=x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,$\frac{1}{4}$) | B. | ($\frac{1}{4}$,$\frac{1}{2}$) | C. | ($\frac{1}{2}$,$\frac{3}{4}$) | D. | ($\frac{3}{4}$,1) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com