16.已知$cos(α-\frac{π}{2})=\frac{3}{5}$且$α∈(\frac{π}{2},π)$,則cosα=-$\frac{4}{5}$,$tan(α-\frac{π}{4})$=-7.

分析 由條件利用誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系、兩角差的正切公式,求得要求式子的值.

解答 解:∵已知$cos(α-\frac{π}{2})=\frac{3}{5}$=cos($\frac{π}{2}$-α)=sinα,且$α∈(\frac{π}{2},π)$,
則cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{4}{5}$.
再根據(jù)tanα=$\frac{sinα}{cosα}$=-$\frac{3}{4}$,可得$tan(α-\frac{π}{4})$=$\frac{tanα-1}{1+tanα}$=-7,
故答案為:-$\frac{4}{5}$;-7.

點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系、兩角差的正切公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,正方體棱長(zhǎng)為4,M,P分別為A1B1,B1C1的中點(diǎn),設(shè)點(diǎn)D,M,P三點(diǎn)的平面與棱CC1交于點(diǎn)N,求PM+PN的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在幾何體ABDCE中,AB=AD,AE⊥平面ABD,M為線(xiàn)段BD的中點(diǎn),MC∥AE,AE=MC.
(1)求證:平面BCD⊥平面CDE;
(2)若N為線(xiàn)段DE的中點(diǎn),求證:平面AMN∥平面BEC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.(1)已知a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$=3,求下列各式的值.
①a+a-1;   
②a2+a-2
(2)計(jì)算(2$\frac{7}{9}$)0+(0.1)-1+lg$\frac{1}{50}$-lg2+($\frac{1}{7}$)-1+log75的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某班有男生33人,女生11人,現(xiàn)按照分層抽樣的方法建立一個(gè)4人的課外興趣小組.
(Ⅰ)求課外興趣小組中男、女同學(xué)的人數(shù);
(Ⅱ)老師決定從這個(gè)課外興趣小組中選出2名同學(xué)做某項(xiàng)實(shí)驗(yàn),選取方法是先從小組里選出1名同學(xué),該同學(xué)做完實(shí)驗(yàn)后,再?gòu)男〗M里剩下的同學(xué)中選出1名同學(xué)做實(shí)驗(yàn),求選出的2名同學(xué)中有女同學(xué)的概率;
(Ⅲ)老師要求每位同學(xué)重復(fù)5次實(shí)驗(yàn),實(shí)驗(yàn)結(jié)束后,第一位同學(xué)得到的實(shí)驗(yàn)數(shù)據(jù)為68,70,71,72,74,第二位同學(xué)得到的實(shí)驗(yàn)數(shù)據(jù)為69,70,70,72,74,請(qǐng)問(wèn)哪位同學(xué)的實(shí)驗(yàn)更穩(wěn)定?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)函數(shù)f(x)=x2+ax+b,(a,b∈R).
(Ⅰ)當(dāng)b=$\frac{{a}^{2}}{4}$+1時(shí),求函數(shù)f(x)在[-1,1]上的最小值g(a)的表達(dá)式;
(Ⅱ)若b=a+1且函數(shù)f(x)在[-1,1]上存在兩個(gè)不同零點(diǎn),試求實(shí)數(shù)a的取值范圍.
(Ⅲ)若b=a+1且函數(shù)f(x)在[-1,1]上存在一個(gè)零點(diǎn),試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知復(fù)數(shù)$z=\frac{1}{1+i}$,則z的共軛復(fù)數(shù)$\overline z$等于(  )
A.$\frac{1}{2}+\frac{i}{2}$B.$\frac{1}{2}-\frac{i}{2}$C.1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知A={x|-1<x<4},B={x|-5$<x<\frac{3}{2}$},C={x|x<2a},求:
(1)A∪B      
(2)A⊆C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若等差數(shù)列{an}中,${a_3}+a_4^{\;}+{a_5}=2$,a4+a5+a6=5,則a8+a9+a10=17.

查看答案和解析>>

同步練習(xí)冊(cè)答案