化簡方程:log4(4x+1)-
1
2
x=log4(a•2x-
4
3
a)
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:利用對數(shù)函數(shù)的運算法則,可以把對數(shù)方程化簡為指數(shù)方程.
解答: 解:∵log4(4x+1)-
1
2
x=log4(a•2x-
4
3
a),
∴l(xiāng)og4(4x+1)-log4(a•2x-
4
3
a)=
1
2
x,
log4
4x+1
2ax-
4
3
a
=
1
2
x,(x>-
1
4

4x+1
2ax-
4
3
a
=2x
,(x>-
1
4
).
故原方程簡化為:
4x+1
2ax-
4
3
a
=2x
,(x>-
1
4
).
點評:本題考查對數(shù)方程的化簡,是基礎題,解題時要注意對數(shù)的運算法則的靈活運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x+3)的定義域為[-5,-2],則F(x)=f(x+1)+f(x-1)的定義域為( 。
A、[-1,0]
B、[-1,1]
C、[0,1]
D、[-5,-2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-(2m-3)x+m2-1,m∈R,若x∈〔-2,4〕
(1)求f(x)的最小值g(min);
(2)求f(x)的最大值g(max).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx+ax,a∈R.
(Ⅰ)若a=-1,求函數(shù)f(x)的最大值;
(Ⅱ)試求函數(shù)在區(qū)間(1,2)上的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)解不等式:|x-1|+|2x+5|<8;
(2)已知a,b,c>0,且a+b+c=1,證明:
a2
b+3c
+
b2
c+3a
+
c2
a+3b
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三內(nèi)角A,B,C所對三邊分別為a,b,c,且cos(
π
4
-A)=
2
10

(Ⅰ)求sinA的值;
(Ⅱ)若△ABC的面積S=12,b=6,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在四面體ABCD中,AB=AC=1,∠BAC=90°,AD=
3
,△BCD是正三角形,
(1)求證:AD⊥BC;
(2)求AB與平面ACD所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=a-bsinx的最大值為
3
2
,最小值為-
1
2
,求函數(shù)y=-4asinbx的最值和最小正周期.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2-5x+6=0},B={x|x2+2x-8=0},則A∪B=
 

查看答案和解析>>

同步練習冊答案