4.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且b2-a2=ac,則( 。
A.B=2CB.B=2AC.A=2CD.C=2A

分析 利用余弦定理,正弦定理化簡(jiǎn)已知可得2sinAcosB=sinC-sinA,根據(jù)三角形內(nèi)角和定理及三角函數(shù)恒等變換的應(yīng)用解得sin(B-A)=sinA,即B-A=A或B-A=180-A,從而可得B=2A.

解答 解:∵cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{{c}^{2}-ac}{2ac}$=$\frac{c-a}{2a}$=$\frac{sinC-sinA}{2sinA}$
∴2sinAcosB=sinC-sinA=sin(A+B)-sinA
=sinAcosB-cosAsinB-sinA
移項(xiàng),整理,得sin(B-A)=sinA
即B-A=A或B-A=180-A
所以B=2A 或 B=180(舍).
故選:B.

點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理,三角形內(nèi)角和定理,三角函數(shù)恒等變換的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知集合A={x|2≤2x≤16},B={x|log3x>1}.
(1)分別求A∩B,(∁RB)∪A;
(2)已知集合C={x|1<x<a},若C⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在集合$\left\{{x\left|{x=\frac{nπ}{5},n=1,2,3,4,5,6,7,8}\right.}\right\}$中任取一個(gè)元素,所取元素恰好滿足不等式tanx>0的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若方程|x-2|•(x+1)=k有三個(gè)不同的解,則常數(shù)k的取值范圍為0<k<$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)f(x)=ax2+bx+2是定義在[1+a,2]上的偶函數(shù),則f(x)的值域是[-10,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{2}{3}$x3+x2+ax+1在(-1,0)上有兩個(gè)極值點(diǎn)x1,x2,且x1<x2
(1)求實(shí)數(shù)a的取值范圍;
(2)證明:當(dāng)-$\frac{1}{2}$<x<0 時(shí),f(x)>$\frac{11}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.自點(diǎn)A(-3,3)發(fā)出的光線l射到x軸上,被x軸反射,反射光線所在的直線與圓C:x2+y2-4x-4y+7=0相切,求光線l和反射光線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.經(jīng)過(guò)圓x2-4x+y2=0的圓心C,且與直線x+y=0垂直的直線方程是(  )
A.x+y+2=0B.x+y-2=0C.x-y+2=0D.x-y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)c>0,命題P:y=logcx是減函數(shù);命題Q:2x-1+2c>0對(duì)任意x∈R恒成立.若P或Q為真,P且Q為假,試求c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案