【題目】下列所給4個(gè)圖象中,與所給3件事吻合最好的順序?yàn)?/span> ( )

(1)我離開家不久,發(fā)現(xiàn)自己把作業(yè)本忘在家里了,于是立刻返回家里取了作業(yè)本再上學(xué);

(2)我出發(fā)后,心情輕松,緩緩行進(jìn),后來(lái)為了趕時(shí)間開始加速;

(3)我騎著車一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時(shí)間.

A. (1)(2)(4) B. (4)(2)(1) C. (4)(3)(1) D. (4)(1)(2)

【答案】B

【解析】

由實(shí)際背景出發(fā)確定圖象的特征,從而解得.

(1)我離開家不久,發(fā)現(xiàn)自己把作業(yè)本放在家里了,于是立刻返回家里取了作業(yè)本再上學(xué),中間有回到家的過(guò)程,故④成立;

(2)我出發(fā)后,心情輕松,緩緩行進(jìn),后來(lái)為了趕時(shí)間開始加速,②符合;

(3)我騎著車一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時(shí)間,①符合.

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】精準(zhǔn)扶貧是鞏固溫飽成果、加快脫貧致富、實(shí)現(xiàn)中華民族偉大“中國(guó)夢(mèng)”的重要保障.某地政府在對(duì)某鄉(xiāng)鎮(zhèn)企業(yè)實(shí)施精準(zhǔn)扶貧的工作中,準(zhǔn)備投入資金將當(dāng)?shù)剞r(nóng)產(chǎn)品進(jìn)行二次加工后進(jìn)行推廣促銷,預(yù)計(jì)該批產(chǎn)品銷售量萬(wàn)件(生產(chǎn)量與銷售量相等)與推廣促銷費(fèi)萬(wàn)元之間的函數(shù)關(guān)系為(其中推廣促銷費(fèi)不能超過(guò)5千元).已知加工此農(nóng)產(chǎn)品還要投入成本萬(wàn)元(不包括推廣促銷費(fèi)用),若加工后的每件成品的銷售價(jià)格定為元/件.

(1)試將該批產(chǎn)品的利潤(rùn)萬(wàn)元表示為推廣促銷費(fèi)萬(wàn)元的函數(shù);(利潤(rùn)=銷售額-成本-推廣促銷費(fèi))

(2)當(dāng)推廣促銷費(fèi)投入多少萬(wàn)元時(shí),此批產(chǎn)品的利潤(rùn)最大?最大利潤(rùn)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD的底面ABCD為菱形,且∠ABC=60°,
AB=PC=2,PA=PB=

(1)求證:平面PAB⊥平面ABCD;
(2)設(shè)H是PB上的動(dòng)點(diǎn),求CH與平面PAB所成最大角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=.

(1)判斷函數(shù)f(x)的奇偶性;

(2)判斷并用定義證明函數(shù)f(x)在其定義域上的單調(diào)性.

(3)若對(duì)任意的t1,不等式f()+f()<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中與f(x)=x是同一函數(shù)的有(  )

y=y=y=y=f(t)=tg(x)=x

A. 1 個(gè) B. 2 個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形所在平面與三角形所在平面互相垂直,且, .

(1)求證: 平面;

(2)若 ,求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等差數(shù)列中, , ,其前項(xiàng)和為.

1求數(shù)列的通項(xiàng)公式;

(2)設(shè)數(shù)列滿足其前項(xiàng)和為為,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖所示,且f(α)=1,α∈(0, ),則cos(2 )=( )

A.
B.
C.﹣
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱豬ABCD﹣A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,A1A=AB=2,E為棱AA1的中點(diǎn).

(1)證明:B1C1⊥CE;
(2)求二面角B1﹣CE﹣C1的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案