【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線是過點,傾斜角為的直線,以直角坐標(biāo)系的原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

(1)求曲線的普通方程和曲線的一個參數(shù)方程;

(2)曲線與曲線相交于兩點,求的值.

【答案】(1)曲線的普通方程為,由題得,曲線的一個參數(shù)方程為為參數(shù));(2.

【解析】試題分析:(1)由極坐標(biāo)和直角坐標(biāo)互化公式轉(zhuǎn)化極坐標(biāo)方程為普通方程即可.直接利用直線的傾斜角,以及經(jīng)過的點 求出直線的參數(shù)方程:

2)直線的參數(shù)方程代入橢圓方程,利用韋達定理,根據(jù)參數(shù)的幾何意義求解即可.

試題解析:(1,

,

即曲線的普通方程為,

由題得,曲線的一個參數(shù)方程為

為參數(shù));

2)設(shè),

,代入中,

,整理得,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合A={x|1<x≤8},B={x|2<x<9},C={x|x≥a}.
(1)求A∩B,A∪B;
(2)如果A∩C≠,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a+a1= (a>1)
(1)求下列各式的值:
(Ⅰ)a +a ;
(Ⅱ)a +a
(2)已知2lg(x﹣2y)=lgx+lgy,求loga 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(Ⅰ)給出的一個取值,使得曲線存在斜率為的切線,并說明理由;

(Ⅱ)若存在極小值和極大值,證明: 的極小值大于極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù),( ),若對任意,總存在,使得成立,則的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是公比為正數(shù)的等比數(shù)列, .

(1)求的通項公式;

(2)設(shè)是首項為1,公差為2的等差數(shù)列,求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某重點高中擬把學(xué)校打造成新型示范高中,為此制定了學(xué)生“七不準(zhǔn)”,“一日三省十問”等新的規(guī)章制度.新規(guī)章制度實施一段時間后,學(xué)校就新規(guī)章制度隨機抽取部分學(xué)生進行問卷調(diào)查,調(diào)查卷共有10個問題,每個問題10分,調(diào)查結(jié)束后,按分?jǐn)?shù)分成5組: , , ,并作出頻率分布直方圖與樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在, 的數(shù)據(jù)).

1)求樣本容量和頻率分布直方圖中的的值;

2)在選取的樣本中,從分?jǐn)?shù)在70分以下的學(xué)生中隨機抽取2名學(xué)生進行座談會,求所抽取的2名學(xué)生中恰有一人得分在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 , 是坐標(biāo)原點, 分別為其左右焦點, , 是橢圓上一點, 的最大值為

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線與橢圓交于兩點,且

(i)求證: 為定值;

(ii)求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與拋物線相切,且與軸的交點為,點.若動點與兩定點所構(gòu)成三角形的周長為6.

(Ⅰ) 求動點的軌跡的方程;

(Ⅱ) 設(shè)斜率為的直線交曲線兩點,當(dāng),且位于直線的兩側(cè)時,證明: .

查看答案和解析>>

同步練習(xí)冊答案