若實(shí)數(shù)x、y滿足
2x-y≥0
y≥x
y≥-x+b
且z=2x+y的最小值為3,則實(shí)數(shù)b=( 。
A、
3
2
B、
9
4
C、3
D、5
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:數(shù)形結(jié)合
分析:由約束條件作出可行域,化z=2x+y為直線方程的斜截式,平移后得到使z=2x+y取最小值的點(diǎn),聯(lián)立方程組求得點(diǎn)的坐標(biāo),結(jié)合z=2x+y的最小值為3求得b的值.
解答: 解:由約束條件
2x-y≥0
y≥x
y≥-x+b
作可行域如圖,

當(dāng)平行直線系y=-2x+z經(jīng)過(guò)可行域內(nèi)的點(diǎn)A(
b
3
,
2b
3
)時(shí),
z取得最小值,即z=2×
b
3
+
2b
3
=3,解得b=
9
4

故選:B.
點(diǎn)評(píng):本題考查了簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知空間四形OABC的各邊和對(duì)角線的長(zhǎng)均為1,則OA與平面ABC所成角的余弦值的大小是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)為偶函數(shù),且f(2+x)=f(2-x),當(dāng)-2≤x≤0時(shí),f(x)=2x;若n∈N*,an=f(n),則a2013=( 。
A、2013
B、-2013
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線a不平行于平面α,則下列結(jié)論成立的是( 。
A、α內(nèi)的所有直線都與直線a異面
B、α內(nèi)可能存在與a平行的直線
C、α內(nèi)的直線都與a相交
D、直線a與平面α沒(méi)有公共點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知a=8,B=60°,C=75°,則b等于( 。
A、4
6
B、
5
C、4
3
D、
22
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=log
1
2
(3+2x-x2)的值域是( 。
A、(-∞,2)
B、(-∞,-2)
C、(2,+∞)
D、[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)U為全集,P,Q為非空集合,且P?Q?U,下面結(jié)論中不正確的是( 。
A、(∁UP)∪Q=U
B、(∁UP)∩Q=∅
C、P∪Q=Q
D、(∁UQ)∩P=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2|sinx|+3sinx,x∈[-π,π]
(1)求函數(shù)f(x)的值域;
(2)設(shè)函數(shù)g(x)=f(x)-k;
①討論函數(shù)g(x)的零點(diǎn)個(gè)數(shù);
②若存在x∈[-
π
4
6
],使不等式g(x)≥k2+5成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某商品店某天以每袋5元的價(jià)格從批發(fā)市場(chǎng)購(gòu)進(jìn)若干袋某種食品,然后以每袋10元的價(jià)格出售.如果當(dāng)天賣不完,只能做垃圾處理.若商品店一天購(gòu)進(jìn)17袋這種食品,求獲得的利潤(rùn)y(單位:元)與當(dāng)天需求x(單位:袋,x∈N)的函數(shù)解析式,并作出y=f(x)的圖象.

查看答案和解析>>

同步練習(xí)冊(cè)答案